
DFSORT

Tuning Guide
Release 14

SC26-3111-02

���

DFSORT

Tuning Guide
Release 14

SC26-3111-02

���

Third Edition (September 1998)

This edition replaces and makes obsolete the previous edition, SC26-3111-01. The technical changes for this edition
are summarized under ″Summary of Changes″, and are indicated by a vertical bar to the left of a change.

This edition applies to Release 14 of DFSORT, 5740-SM1, and to any subsequent releases until otherwise indicated
in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation
RCF Processing Department
G26/050
5600 Cottle Road
San Jose, CA 95193-0000
U.S.A.

Or, you can send us comments about this book electronically:
IBMLink from US and IBM Network: STARPUBS at SJEVM5
IBMLink from Canada: STARPUBS at TORIBM
IBM Mail Exchange: USIB3VVD at IBMMAIL
Internet: starpubs@sjevm5.vnet.ibm.com or, starpubs at sjevm5.vnet.ibm.com
Fax (US): 1–800–426–6209

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!

Before using this information and the product it supports, be sure to read the
general information under “Notices” on page ix.

|
|

|
|

|
|
|
|
|
|

|

Contents

Figures . vii

Notices . ix
Programming Interface Information ix
Trademarks . ix

xi
Performance Comparisons . xi
About This Book. xi
Related Publications . xii

DFSORT Library . xii
DFSORT Library Softcopy Information xiii
OS/390 Publications . xiii
Storage Management Library (SML) xiii
Storage Subsystem Library (SSL) xiii
Other Documentation . xiv

Referenced Publications . xiv

Summary of Changes . xvii
Third Edition, September 1998 xvii

New Programming Support for Release 14 xvii
New Programming Support for Release 13 (PTFs after April, 1996) xix
New Programming Support for Release 13 (PTFs - April, 1996) xx

Chapter 1. Introduction . 1
DFSORT on the World Wide Web 1
DFSORT FTP Site . 1
The Importance of Tuning . 1
Examples of Successful Tuning 2
System Resources . 2
Performance Indicators . 4

Processor Utilization . 4
System Paging . 4
I/O Activity . 4
Elapsed Time . 5
DASD Utilization . 5

Chapter 2. DFSORT Performance Features 7
Blockset Technique . 7
OUTFIL . 8

Benefits . 8
Hipersorting . 8

Benefits . 8
Operation . 9

Sorting with Data Space . 10
Benefits . 10
Operation . 11

Dynamic Storage Adjustment . 11
Benefits . 11
Operation . 11

Cache Fast Write (CFW) . 12
Benefits . 12
Operation . 12

ICEGENER . 12

© Copyright IBM Corp. 1992, 1998 iii

||

||
||

||
||

||
||
||

Compression . 13
Striping. 13
Dynamic Allocation of Work Data Sets 13
System Determined Block Size (SDB) 14
IDCAMS BLDINDEX . 14
DFSORT’s Performance Booster for The SAS System 14
SmartBatch Pipes . 14
VIO in Expanded Storage . 15

Chapter 3. Environment Considerations 17
Storage Hierarchy . 17

Processor Cache . 17
Central Storage. 18
Expanded Storage . 18
Storage Control Cache . 18
DASD . 19
Tape. 19

Virtual Storage . 20
Main Storage . 20

System-Managed Storage . 21

Chapter 4. Installation Considerations 25
DFSORT Installation . 25

Running DFSORT Resident 25
DFSORT SVC . 26
ICEGENER . 26

Storage Options . 27
Recommendations for Storage Options 27

DFSORT Capabilities . 30
Sorting with Data Space . 30
Hipersorting . 31
Cache Fast Write . 32

DFSORT Installation Defaults 33
ICEMAC . 33
Environment Installation Modules 33
Time-of-Day Installation Modules 33
Listing the Installation Defaults with ICETOOL 34
Installation Options and Performance. 34

Installation Exits . 39
ICEIEXIT . 39
ICETEXIT . 40

Chapter 5. Run-Time Considerations 41
Sorting with Data Space . 41

The DSPSIZE Parameter . 41
How DFSORT Uses Data Space 41

Hipersorting . 42
Limitations . 42
Application Adjustments . 43

Cache Fast Write . 45
File Size . 45
Storage . 46

Data Set Size and Virtual Storage 46
Virtual Storage Limitations. 48
Virtual Storage Guidelines . 49
Virtual Storage and Sorting with Data Space 49

iv DFSORT Tuning Guide R14

||

Input and Output Data Sets . 50
Block Sizes . 50
Type of Device . 52
VIO for DFSORT Data Sets 53
Input and Output Data Set Enhancements 53

Run-time Options and Performance 54

Chapter 6. Application Considerations 57
VS COBOL II Interfaces to DFSORT 57

Invoking DFSORT from COBOL 57
Processing with FASTSRT 58
Processing with NOFASTSRT 58
Performance . 59

Sample Sorting Application . 60
Method 1: COBOL Program with INPUT/OUTPUT PROCEDUREs 60

COBOL Calling Program . 61
Operation (NOFASTSRT in Effect) 63
Performance . 64

Method 2: COBOL Program with DFSORT Control Statements 64
Operation (FASTSRT in Effect) 65
Productivity . 65
Control Statements . 65
COBOL Calling Program . 65
Performance . 67

Method 3: DFSORT with Control Statements 67
Control Statements . 68
Operation . 68
Productivity . 68
Performance . 68

Chapter 7. DFSORT Performance Data 69
DFSORT Performance Indicators 69
Overview of DFSORT Performance Information 72
Sources of DFSORT Performance Information 74

Service Level Reporter . 75
Enterprise Performance Data Manager 75
Performance Management for I/O 75
DFSORT/ICETOOL . 76

Analysis Techniques for DFSORT Performance Data 77
Simple Analysis. 77
Moderate Analysis. 78
Thorough Analysis . 80
Using RMF Data . 81

DFSORT Requirements and System Resources. 81
Placement of Data Sets . 82
Use of Virtual Storage . 82
Use of Expanded Storage . 83
Use of VIO Data Sets . 83

Performance Trade-Offs . 83

Appendix A. Sample ICETEXIT 85

Appendix B. Estimating Elapsed Time 95

Summary of Changes . 97
Release 13 . 97

Contents v

||

New Programming Support for Release 13 97
New Programming Support for Release 12 (PTFs) 100
New Device Support for Release 12 (PTFs) 100

Index . 103

Readers’ Comments — We’d Like to Hear from You 109

vi DFSORT Tuning Guide R14

Figures

1. ICEGENER versus IEBGENER Copy Comparison 13
2. ACS Storage Class Routine . 21
3. Storage Class ACS Routine . 22
4. Storage Group ACS Routine . 22
5. Using ICETOOL to List Installation Defaults . 34
6. Benefits of Eliminating Intermediate Merging. 48
7. 3390 Utilization for Various Block Sizes . 51
8. Benefits of Large Input/Output Data Set Block Sizes 52
9. Benefits of FASTSRT . 60

10. COBOL Calling Program for Method 1 . 61
11. DFSORT Control Statements for Method 2 . 65
12. COBOL Calling Program for Method 2 . 66
13. Method 1 vs Method 2 Performance Comparison 67
14. DFSORT Control Statements for Method 4 . 68
15. A Sample JES2 Log . 70
16. DFSORT Messages. 71
17. Sample ICETEXIT . 85
18. Sample SVC 249 to Write a SMF User Record . 94

© Copyright IBM Corp. 1992, 1998 vii

||

viii DFSORT Tuning Guide R14

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or service.
The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as a
Programming Interface of DFSORT.

This book also documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of DFSORT. This information is identified
where it occurs, either by an introductory statement to a chapter or by the following
marking:

Programming Interface information

Programming Interface information

End of Programming Interface information

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

DB2
DFSMS/MVS
DFSORT
ESA/390
Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
ESCON
GDDM
Hipersorting
Hiperspace

IBM
MVS/ESA
NetView
OS/390
RACF
Resource Measurement Facility
RMF
SmartBatch
System/370
3090

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of other companies.

© Copyright IBM Corp. 1992, 1998 ix

|

|
|

|
|

|
|
|
|

|

|
|
|

|

|

|

x DFSORT Tuning Guide R14

Sorting is one of the most frequently used functions at most data processing sites.

This book provides information about tuning IBM DFSORT Release 14, offering
suggestions for reducing its use of system resources and achieving better
turnaround time for the many applications that use DFSORT without adversely
affecting system performance.

This book is intended for systems engineers, performance analysts, system
programmers, and application programmers, who have some experience with
DFSORT. For those unfamiliar with DFSORT, DFSORT Installation and
Customization (SC33-4034) and DFSORT Application Programming Guide
(SC33–4035) are the prerequisites for reading this book.

In this book, one megabyte (MB) is equal to 1024 kilobytes (KB), which is equal to
1048576 bytes.

Performance Comparisons
The performance comparisons shown in this book are derived from a single run of
each component of the comparison in a controlled environment. The applications
used are not meant to be representative of any particular user’s environment. The
performance comparisons shown are examples of the effects of various tuning
techniques in particular situations.

Unless otherwise stated, applications were run:

v On an IBM 9672 Model R73 with 1GB of central storage and 1GB of expanded
storage, in a stand-alone OS/390 V2R5 environment. All of the input, output, and
work data sets resided on IBM RAMAC 9391-A31 DASD connected to an IBM
3990-6 control unit. 1GB of storage controller cache was available for Cache
Fast Write usage.

v With DFSORT Release 14 using the IBM-supplied installation defaults.

v Using 150MB input data sets with RECFM=FB, LRECL=160, BLKSIZE=27840
and 20-byte randomly generated keys.

The actual performance of a particularsort application is dependent on many factors
including record length, data set size, region size, total central and expanded
storage available, type and number of auxiliary storage devices, and specific editing
functions and exitsused.

CPU time represents the sum of the following five fields: TCB, SRB, RCT, HPT, and
IIP. See “Processor Utilization” on page 4 for a description of these fields.

Elapsed time results for sorting in a multi-tasking environment are application profile
and workload dependent. Therefore, the results might differ from user to user.

IBM does not represent nor warrant that your applications will achieve the same
performance data as the examples in this book.

About This Book
This manual contains the following sections:

© Copyright IBM Corp. 1992, 1998 xi

|
|
|
|

|
|

|
|
|
|
|

|

|
|

|

|

|
|

v “Chapter 1. Introduction” on page 1, describes the importance of tuning DFSORT,
an example of successful tuning, system resources and tuning of DFSORT, and
the performance indicators for DFSORT.

v “Chapter 2. DFSORT Performance Features” on page 7, describes the
performance features of DFSORT.

v “Chapter 3. Environment Considerations” on page 17, describes the relationship
between DFSORT and the environment in which it runs including the storage
hierarchy, virtual storage, and system-managed storage.

v “Chapter 4. Installation Considerations” on page 25, describes how installation
options, run-time options, DFSORT capabilities, installation defaults, site-wide
options, and installation exits affect the performance of DFSORT applications.

v “Chapter 5. Run-Time Considerations” on page 41, describes DFSORT features
and how to use them to improve the run-time performance of DFSORT.

v “Chapter 6. Application Considerations” on page 57, describes how new and
existing applications can make efficient and effective use of the DFSORT
facilities.

v “Chapter 7. DFSORT Performance Data” on page 69, describes the actions you
can take to tune DFSORT, the type and location of information you need to tune
DFSORT, and the methods you can use to collect the information.

v “Appendix A. Sample ICETEXIT” on page 85, includes sample source code for an
ICETEXIT routine which creates a summary performance record each time
DFSORT is used, and a SVC to write the resulting user records to SMF.

v “Appendix B. Estimating Elapsed Time” on page 95, shows how you can calculate
a rough estimate of the best possible elapsed time for a particular sort
application.

Related Publications
The information presented in the following publications can help you to use the
options and facilities of DFSORT.

DFSORT Library
DFSORT Tuning Guide is a part of a more extensive DFSORT library. These books
can help you work with DFSORT more effectively.

Task Publication Order Number

Planning for and customizing
DFSORT

DFSORT Installation and Customization Release
14

SC33-4034

Learning about DFSORT Getting Started with DFSORT Release 14 SC26-4109

Application programming DFSORT Application Programming Guide
Release 14

SC33-4035

Interpreting messages and codes, and
diagnosing failures.

DFSORT Messages, Codes and Diagnosis Guide
Release 14

SC26-7050

Quick reference DFSORT Reference Summary Release 14 SX33-8001

Learning to use DFSORT panels DFSORT Panels Guide GC26-7037

You can order a complete set of DFSORT publications with the order number
SBOF-1243, except for DFSORT Licensed Program Specifications (GC33-4032),
which must be ordered separately.

xii DFSORT Tuning Guide R14

|
|
|

|

DFSORT Library Softcopy Information
A softcopy version of the DFSORT library is available on two CD-ROMs as shown
in the table that follows. Each of the CD-ROMs contains all of the DFSORT books
for Release 13 and Release 14 with the exception of the DFSORT Reference
Summary.

Order Number Title

SK2T-6700 IBM Online Library: OS/390 Collection

SK2T-0710 IBM Online Library: MVS Collection

OS/390 Publications
For up-to-date descriptions of all of the books that support OS/390, refer to the
OS/390 Information Roadmap, (GC28–1727).

Storage Management Library (SML)

Task Publication Order Number

Locating the appropriate storage
management publication

Storage Management Reader’s Guide GC26-4403

Learning about storage management Focus on Storage Management GC26-4404

Leading a storage administration
group

Leading an Effective Storage Administration
Group

SC26-4405

Migrating to system-managed storage Storage Management Subsystem Migration
Planning Guide

SC26-4406

Managing storage pools Managing Storage Pools SC26-4407

Managing data sets Managing Data Sets SC26-4408

Evaluating current storage
configurations

Configuring Storage Subsystems SC26-4409

Storage Subsystem Library (SSL)

Task Publication Order Number

Locating information within the SSL Storage Subsystem Library Master Bibliography,
Index, and Glossary

GC26-4496

Evaluating and learning about the
3990 storage control unit

IBM 3990 Storage Control Introduction GA32-0098

Evaluating and learning about the
3390 DASD

IBM 3390 Direct Access Storage Introduction GC26-4573

Evaluating and learning about the
RAMAC array DASD

IBM RAMAC Array DASD Introduction GC26-7012

Planning for, installing, and
administering storage with the 3990
storage control unit

IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide

GA32-0100

Using the 3390 in an MVS
environment

Using the IBM 3390 Direct Access Storage in an
MVS Environment

GC26-4574

Using the RAMAC array DASD in an
MVS, VM, and VSE environment

Using the IBM RAMAC Array DASD in an MVS,
VM, and VSE Environment

GC26-7013

xiii

|

|
|
|
|

|||

||

||
|

|

|
|

Task Publication Order Number

Reference for the 3990 storage
control unit

IBM 3990 Storage Control Reference GA32-0099

Diagnosing and correcting disk media
errors Maintaining storage
subsystems

Maintaining IBM Storage Subsystem Media GC26-4495

Other Documentation

Task Publication Order Number

Assembler programming for IBM
processors

IBM Enterprise Systems Architecture/390
Principles of Operation

SA22-7201

IBM Enterprise Systems Architecture/370
Principles of Operation

SA22-7200

Application programming with COBOL VS COBOL II Application Programming Guide SC26-4045

COBOL for MVS & VM LPS GC26-4761

COBOL for OS/390 & VM V2.1 Programming
Guide

SC26-9049

Referenced Publications

Short Title Publication Order Number

Analyzing RMF Reports Analyzing RMF Monitor I and II Reports LY28-1007

Application Programming Guide DFSORT Application Programming Guide
Release 14

SC33-4035

COBOL Application Programming
Guide

VS COBOL II Application Programming Guide SC26-4045

SmartBatch/MVS SmartBatch V1R1 Overview GC28-16227

SmartBatch V1R1 Users Guide and Reference GC28-1640

Diagnosis Guide DFSORT Messages, Codes and Diagnosis Guide
Release 14

SC26-7050

Extended Addressability MVS/ESA Application Development Guide:
Extended Addressability (for MVS/ESA SP
Version 4)

GC28-1652

OS/390 V2 R4.0 MVS Extended Addressability
Guide

GC28-1769

Getting Started Getting Started with DFSORT Release 14 SC26-4109

Initialization and Tuning MVS/ESA Initialization and Tuning Reference (for
MVS/ESA SP Version 5)

GC28-1635

OS/190 V2 R5.0 MVS Initialization and Tuning
Reference

SC28-1752

Installation and Customization DFSORT Installation and Customization Release
14

SC33-4034

DFSORT Panels Guide GC26-7037

Installation Exits MVS/ESA Installation Exits (for MVS/ESA SP
Version 4)

GC28-1637

OS/390 V2 R5.0 MVS Installation Exits SC28-1753

xiv DFSORT Tuning Guide R14

|
|
|
|
|

||

|
|
|

||

|

|
|
|

|
|
|

Short Title Publication Order Number

Messages and Codes DFSORT Messages, Codes and Diagnosis Guide SC26-7050

Performance Information Cache Performance Management GC66-3214

Performance Management in a DFSMS/MVS
World

GC66-3252

3390 DAS Introduction IBM 3390 Direct Access Storage Introduction GC26-4573

MVS/ESA System Programming
Library: System Modifications (for
MVS/ESA SP Version 3)

GC28-1831

System Management Facilities MVS/ESA System Management Facilities (SMF)
(for MVS/ESA Version 4)

GC28-1628

OS/390 V2 R5.0 MVS System Management
Facilities (SMF)

GC28-1783

xv

xvi DFSORT Tuning Guide R14

Summary of Changes

Third Edition, September 1998

New Programming Support for Release 14

Symbols for Fields and Constants
DFSORT now provides a simple and flexible method for using symbols in DFSORT
and ICETOOL statements. You can define and use a symbol for any field or
constant that is recognized in a DFSORT control statement or ICETOOL operator.
This makes it easy to create and reuse collections of symbols (that is, mappings)
for your frequently used data.

In addition, you can obtain and use collections of DFSORT symbols created
specifically for data associated with other products (for example, RACF,
DFSMSrmm and DCOLLECT) or by your site.

DFSORT symbols can increase your productivity by automatically providing the
positions, lengths and formats of the fields and the literals, numbers, and bit flags of
the constants, associated with the particular records you are processing with
DFSORT or ICETOOL.

Improvements in Performance, Capacity and Storage Usage
Blockset copy and merge applications can now use storage above 16MB virtual,
providing improved performance and virtual storage constraint relief.

Blockset copy and merge modules will now reside above 16MB virtual, providing
virtual storage constraint relief.

DFSORT can now handle a significantly larger number of INCLUDE and OMIT
conditions.

DFSORT can now handle a significantly larger number of SUM fields.

The upper limit for the number of JCL and dynamically allocated work data sets that
can be specified and used by DFSORT’s Blockset technique has been raised from
100 to 255. The use of more work data sets increases the maximum amount of
data DFSORT can process in a single sort application. Any valid ddname of the
form SORTWKdd or SORTWKd can now be used for DASD work data sets (for
example, SORTWK01, SORTWKC3, SORTWK2, SORTWK#5, SORTWKA,
SORTWKXY and so on).

The upper limit for the number of input data sets that can be specified and used for
a Blockset merge application has been raised from 16 to 100. The use of more
merge input data sets increases the maximum amount of data DFSORT can
process in a single merge application.

Time-of-Day Option Controls
New time-of-day installation modules (ICETD1-4) allow different sets of installation
defaults to be used, based on the day and time DFSORT applications run. Each
environment installation module (ICEAM1-4) can enable one or more time-of-day
installation modules. This capability allows new levels of control for installation
defaults. For example, larger storage, hiperspace and data space limits could be
used only for batch program-invoked DFSORT applications that run off-shift during
the week, and all weekend.

© Copyright IBM Corp. 1992, 1998 xvii

Repackaging
The product has been repackaged to simplify installation and customization:

v IBM’s DFSORT, DFSMSdfp, and MVS/DFP teams have simplified the process of
replacing IEBGENER with ICEGENER. You now only need to apply a DFSMS or
DFP PTF that supplies an alias of ″IEBGENR″ for IEBGENER and place
ICEGENER with an alias of ″IEBGENER″ ahead of IEBGENER in the system’s
search order for programs.

v The number of FMIDs has been reduced from 10 to 3.

v The number of libraries required to install DFSORT has been reduced from 40 to
26.

v DFSORT R14 now supports a single installation of the product for both resident
and nonresident features. This allows you to decide how to use DFSORT
independent of the installation method, thus reducing the number of decisions
you have to make at installation time.

v All FMIDs in DFSORT R14 can be installed together, including the FMIDs for
both English and Japanese messages and panels.

OUTFIL Processing Enhancements
OUTFIL now supports creation of multiple output records using the fields of the
input record. This allows you to split each record into pieces, include a field in more
than one record, include different fields in different records, and more.

OUTFIL now supports processing of variable-length input records which are too
short to contain all specified OUTFIL OUTREC fields. OUTFIL’s new VLFILL=byte
operand can be used to replace missing bytes in OUTFIL OUTREC fields with the
specified fill byte so the filled fields can be processed.

ICETOOL Enhancement
A new DISCARD(savedd) operand of ICETOOL’s SELECT operator allows you to
save the records that are not selected, in the savedd data set. Thus, in one pass,
you can create an outdd data set with the records that meet your specified criteria,
and a savedd data set with the records that do not meet your specified criteria.
DISCARD(savedd) can be used to save the records discarded by ALLDUPS,
NODUPS, HIGHER(x), LOWER(y), EQUAL(v), FIRST or LAST.

Installation and Run-Time Option Enhancements
A new p% value for the EXPRES, EXPOLD, and EXPMAX installation options and
the HIPRMAX installation and run-time options is now available. p% can be used to
vary the limit DFSORT calculates for the corresponding option as a percentage of
the configured expanded storage on the system at run time. If the configured
expanded storage on a system changes, p% will cause a corresponding change in
the run-time limit calculated for the corresponding option. When sharing DFSORT
installation options between systems, such as in a sysplex, p% can be used to tailor
the limit DFSORT calculates for the corresponding option to the system on which
the application runs.

A new SPANINC installation and run-time option allows you to specify what you
want DFSORT to do if it detects incomplete spanned records. This gives you control
over the action (continue by eliminating incomplete spanned records and recovering
valid records, or terminate), type of message (informational or error) and return
code (0, 4 or 16) for incomplete spanned records.

A new OVFLO installation and run-time option allows you to specify what you want
DFSORT to do when BI, FI, PD or ZD summary fields overflow. This gives you

xviii DFSORT Tuning Guide R14

control over the action (continue or terminate), type of message (informational or
error) and return code (0, 4 or 16) for summary overflow.

A new PAD installation and run-time option allows you to specify what you want
DFSORT to do when the SORTOUT LRECL is larger than the SORTIN/SORTINnn
LRECL. This gives you control over the action (continue or terminate), type of
message (informational or error) and return code (0, 4 or 16) for LRECL padding.

A new TRUNC installation and run-time option allows you to specify what you want
DFSORT to do when the SORTOUT LRECL is smaller than the SORTIN/SORTINnn
LRECL. This gives you control over the action (continue or terminate), type of
message (informational or error) and return code (0, 4 or 16) for LRECL truncation.

The IBM-supplied default for ICEMAC option DSA has been changed from 16MB to
32MB.

The IBM-supplied default for ICEMAC option GENER has been changed from
IEBGENER to IEBGENR.

The maximum value for ICEMAC option OVERRGN has been changed from 64KB
to 16128KB.

Other Enhancements
New messages ICE178I and ICE179A provide information about reallocation of VIO
work data sets.

The option-in-effect messages (ICE127I-ICE133I) are now printed for Blockset copy
and merge applications.

The user exit address constant can now be passed to E32 user exits for Blockset
merge applications.

Null segments in variable spanned input records are now processed by DFSORT
and no longer result in termination. A null segment means that there are no more
segments in the block.

OS/390 and MVS/ESA Only
DFSORT Release 14 only supports the OS/390 and MVS/ESA environments.
MVS/XA and VIRTDSP processing for MVS/XA are no longer supported.

New Programming Support for Release 13 (PTFs after April, 1996)

Additional Year 2000 Features
A new Y2S format can order and transform two-digit character or zoned decimal
year data according to the century window, while handling binary zeros, blanks and
binary ones in the year field as special indicators.

A new Y2B format can order and transform two-digit binary year data according to
the century window.

FREE=CLOSE support for DFSPARM makes it possible to override the SORT
statements generated by multiple COBOL SORT verbs in the same COBOL
program.

Summary of Changes xix

OS/390 Registration
With OS/390 R2 and above, a check is performed to ensure that the DFSORT
product is licensed for use, either as a feature of OS/390 or as a separate program
product.

New Programming Support for Release 13 (PTFs - April, 1996)

Year 2000 Features
New Y2C, Y2Z, Y2P and Y2D formats, in conjunction with a new Y2PAST
installation and run-time option, allow you to handle two-digit year data in the
following ways:

v Set the appropriate century window for your applications (for example, 1915-2014
or 1950-2049).

v Order two-digit character, zoned decimal, packed decimal or decimal year data
according to the century window using Blockset SORT or MERGE (for example,
order 96 representing 1996 before 00 representing 2000 in ascending sequence,
or order 00 before 96 in descending sequence).

v Transform two-digit character, zoned decimal, packed decimal or decimal year
data to four-digit character year data according to the century window using
OUTFIL OUTREC (for example, transform 96 to 1996 and 00 to 2000).

A new PD0 format allows you to order and transform parts of packed decimal fields
(for example, month and day in date fields) using SORT, MERGE and OUTFIL.

Performance Improvements for FLR and VLR Blockset Sorts
Performance improvements for FLR and VLR Blockset sorts include the following:

v Dataspace sorting can now be used for variable-length record sort applications.

v DFSORT data processing methods have been improved.

v Dynamic storage adjustment is a new feature that allows DFSORT to
automatically use more storage than the TMAXLIM value for a Blockset sort
application if DFSORT determines that doing so should improve performance.
New installation option DSA=n has been added to enable you to specify the
dynamic storage adjustment limit.

v The upper limit for the amount of main storage that can be specified and used by
DFSORT has been raised from 32M to 2000M. Specifying more main storage
can provide the following benefits:

– It allows DFSORT to sort very large data sets more efficiently.

– It allows more sort applications to be done entirely in main storage,
eliminating the need for intermediate work space and greatly reducing the
EXCP counts for those applications.

– It increases the maximum amount of data DFSORT can process in a single
sort application.

v New installation option IOMAXBF=n has been added to enable you to specify the
upper limit for the amount of storage to be used for SORTIN and SORTOUT data
set buffers, which in turn limits the amount of data that can be transferred in a
single I/O operation.

v The upper limit for the number of JCL and dynamically allocated work data sets
that can be specified and used by DFSORT’s Blockset technique has been
raised from 32 to 100. The use of more work data sets increases the maximum
amount of data DFSORT can process in a single sort application.

v Changes to the DFSORT SVC provide caching selection enhancements that
improve storage control caching performance, especially for SORTIN and
SORTOUT devices.

xx DFSORT Tuning Guide R14

v DFSORT can now use NOEQUALS for VLR Blockset applications if
EQUALS=NO is specified at installation or NOEQUALS is specified at run-time.
The use of NOEQUALS can improve performance and is recommended for
applications for which the order of records that collate identically need not be
preserved from input to output. To minimize migration concerns, the IBM-supplied
default for the ICEMAC EQUALS option is the new value VLBLKSET, which is
equivalent to EQUALS=YES for VLR Blockset applications and to EQUALS=NO
for all other applications.

Floating Point for SUM
FL format can now be used with the SUM control statement for short (4-byte), long
(8-byte) and extended (16-byte) floating point data.

Security Improvements
Changes to the DFSORT SVC provide security improvements that bring DFSORT
up to B1 security standards.

EXCPVR Processing Removed
To enhance DFSORT’s protection of system integrity, EXCPVR processing will no
longer be used. EXCPVR parameter values will continue to be accepted, but will
have no effect on DFSORT processing. In general, the performance improvements
provided by EXCPVR processing have diminished with newer technologies and will
be more than offset by the performance improvements listed above. Please ignore
any references to EXCPVR in this book; all such references will be deleted when
the book is updated.

New Device Support for Release 13 (PTFs)
The IBM 3590 Magnetic Tape Subsystem is supported for input, output and work
data sets.

Summary of Changes xxi

xxii DFSORT Tuning Guide R14

Chapter 1. Introduction

This book offers information and recommendations on tuning DFSORT. It offers
advice to the system programmer on installing DFSORT and setting its default
parameters as well as to the application programmer on improving the performance
of individual DFSORT applications. It describes the main indicators used to
measure performance and emphasizes the advantages of using DFSORT’s
Blockset technique for improved performance. Since sort applications tend to be
more complex and time-consuming than merge or copy applications, this book
concentrates on techniques for improving the performance of sort applications.
However, many of these techniques are also appropriate for copy and merge
applications.

This book also assumes that DFSORT’s most efficient technique is used. See
“Blockset Technique” on page 7 for more information on ensuring that Blockset is
used.

Note: Although a DFSORT “application” can comprise one or more parts of a job,
for simplicity’s sake the terms “application” and “job” are used
interchangeably in this book.

This chapter describes the following:

v The importance of tuning DFSORT

v Examples of successful tuning of DFSORT

v System resources and tuning DFSORT

v The performance indicators for DFSORT

DFSORT on the World Wide Web
For articles, online books, news, tips, techniques, examples, and more, visit the
DFSORT/MVS home page at URL:
http://www.ibm.com/storage/dfsort/

DFSORT FTP Site
You can obtain DFSORT articles and examples via anonymous FTP to:
index.storsys.ibm.com/dfsort/mvs/

The Importance of Tuning
If you are unsure whether your site can benefit from the advice in this book,
consider the following questions:
v Do you know how frequently DFSORT is invoked at your site?
v Is there growing pressure to reduce your batch window?
v Are you confident that you and your users are using DFSORT efficiently?
v If better tuning could result in significant savings in elapsed time, CPU time,

device connect time, or EXCP counts, would it be worthwhile?

The tuning of DFSORT and the way applications use it is important because sorting
and copying are two of the most frequently used functions at OS/390 and MVS/ESA
sites. DFSORT applications typically consume from 10 to 25 percent of the total
processor resources and 15 to 30 percent of the total I/O channel resources.

© Copyright IBM Corp. 1992, 1998 1

|
|
|

|
|

|
|

|

|
|

|

|

|

More efficient use of DFSORT can lead to:
v Reduced use of system resources
v Reduced job turnaround time
v Improved productivity

All of these benefits can result in cost savings.

Because of the internal optimizations that DFSORT performs (for instance, selecting
the best work data set block size for the run), users often do not take the time to
tune DFSORT or their applications. Experience shows that many sites only begin to
focus on DFSORT performance when there is a crisis: perhaps as data volumes
increase, or the batch window becomes smaller. While this book offers help for
these situations, it is also intended to help avoid them.

Examples of Successful Tuning
Some of the practical advice in this book is based on the experience of DFSORT
customers.

One customer, a large U.S. retailing organization, was facing increased batch
processing times because of growing data volumes. After analysis and subsequent
tuning of its 2500 weekly applications that use DFSORT, the organization was able
to operate in a smaller batch window with a reduction in machine and system
resources used by DFSORT applications. For some applications, the benefits were
substantial. They were able to reduce some frequently-used applications from 4
minutes to 30 seconds. The site was able to reduce the elapsed time for its monthly
payroll application by more than 3 hours.

Another customer, a worldwide company that provides software to financial
institutions, needed to reduce the sort time of an application batch job. After
increasing virtual storage from 1MB to 4MB (TMAXLIM or MAINSIZE option) and
turning on Hipersorting (HIPRMAX=64), the sort time was reduced from 2.5 hours to
20 minutes.

This book offers many recommendations, ranging from advice on setting the most
appropriate option values to guidelines for optimizing virtual storage and work
space. You should decide which recommendations are best for your site, based on
site requirements and the amount of resources available to implement them.

System Resources
The purpose of tuning DFSORT is to use system resources more efficiently. This is
important at most sites, since there are usually too many demands made for limited
resources. Although DFSORT automatically optimizes many of its tuning decisions,
there are additional actions which a site and its DFSORT users can take to further
improve DFSORT performance. These actions depend on the priority given to
various performance objectives.

Different sites and programmers define efficient performance in different ways. A
site with a primarily batch environment or an application programmer with a single
task to complete probably measures performance based on elapsed time.
Alternatively, a site experiencing high CPU usage or a programmer who is charged
based on CPU time is more likely to evaluate efficiency in terms of reduced CPU
time.

Introduction

2 DFSORT Tuning Guide R14

While improved performance is the objective of tuning, often it is necessary to
compromise. That is, improving the use of one system resource can have a
negative impact on other resources, in much the same way that giving more
resources to one application can make it perform much better at the expense of
degrading the performance of other applications that are competing for the same
resources.

The main trade-offs that you should consider are among:

Processor Load
Accounting charges are often based on the number of CPU service units
used by a job or address space. The more CPU time used, the higher the
charges. Reducing a job’s CPU time not only reduces these charges, but
also enables other jobs competing for the same CPU resource to complete
sooner.

Paging Activity
System paging activity reflects how the system is managing virtual storage.
It is made up of three functions: paging, page movement, and migration, all
of which move virtual storage pages from real storage in order to make
room for other pages needed by a running program. Paging is the process
of moving virtual storage pages from central storage to auxiliary storage,
and takes a large amount of elapsed time to perform. Page movement is
the process of moving virtual storage pages between central storage and
expanded storage, and requires much less elapsed time to perform than
paging. Migration is the process of moving pages from expanded storage to
auxiliary storage through central storage, and takes the most elapsed time
of the three to perform.

System paging activity can increase elapsed time for user programs. If the
activity is too high, the system reduces its workload by reducing the number
of jobs running, and might suspend processing of some jobs (known as
swapping) until the paging activity returns to an acceptable level. The result
is that the system spends more time managing virtual storage, while many
user programs take longer to complete.

I/O Activity
Some accounting charges are based on the I/O performed by a job. This is
frequently measured by execute channel program (EXCP) counts. While
EXCP counts might not represent a completely accurate usage of I/O
resources, they are important to many users and sites, and steps can be
taken to reduce them. See Cache Performance Management and
Performance Management in a DFSMS/MVS World for more detailed
information.

Elapsed Time
Elapsed time is likely to be most important for sites with a limited batch
window, where processing of particular applications has to be completed
within a certain period. It is also important to users whose productivity
depends on having their applications complete as soon as possible.

DASD Utilization
In environments where DASD is constrained, the amount of auxiliary
storage required by an application is of paramount concern. For DFSORT
applications, this usually involves the efficient use of output and work data
sets.

Introduction

Chapter 1. Introduction 3

Performance Indicators
This section describes how you can measure the performance factors listed above
for DFSORT. Often, performance is evaluated as a combination of some or all of
them. The priorities given to each depend upon site objectives.

Processor Utilization
CPU fields are used to measure the amount of work performed by the processor, as
opposed to work performed by the I/O and storage subsystems. CPU time consists
of the sum of the following five components.

Task Control Block (TCB)
The CPU time used to perform user program activity on behalf of user tasks
for a job step.

Service Request Block (SRB)
The CPU time used to perform system service requests on behalf of user
tasks for a job step.

Hiperspace Processing Time (HPT)
If the user task reads from or writes to a Hiperspace using the HSPSERV
macro, this is the amount of CPU time used to service these reads and
writes.

I/O Interrupt Processing (IIP)
The CPU time used to handle input/output (I/O) interrupts on behalf of user
tasks for a job step.

Region Control Task (RCT)
If the user task is swapped out while running, this is the amount of CPU
time used to swap the task out and back in again.

System Paging
To be meaningful, paging and swapping activity measurements are usually
associated with particular workloads, or groups of applications that are run
simultaneously on a given processor. As such, system paging activity is more a
measure of the performance and throughput of the entire system than of the
performance of individual applications being run on the system.

Paging activity is often measured by the page-in, page-out, and page-reclaim rates
of different address space types, such as Hiperspace, VIO, or non-VIO address
spaces. For central storage paging, the migration target is also important; moving
pages to auxiliary storage is a lot more expensive in terms of performance than
moving pages to expanded storage. For swapping activity, there is also the
additional distinction between logical and physical swaps.

System paging and swapping activity data is usually gathered by the Resource
Measurement Facility (RMF) or a similar system tool. See Analyzing RMF Reports
for more information on RMF.

I/O Activity
This represents the movement of data between the processor and DASD or tape
devices. The effective use of I/O resources is important to a site and I/O activity is
often an important component of site accounting methodologies.

Because performing input to and output from DASD and tape devices typically
takes much longer than manipulating the data in real storage, the amount of I/O

Introduction

4 DFSORT Tuning Guide R14

performed is a key component of an application’s elapsed time. Therefore, reducing
I/O generally improves an application’s elapsed time.

I/O activity is primarily measured in the following ways:

EXCPs
The number of execute channel program (EXCP) commands issued (logical
I/Os)

SSCHs
The number of start subchannel (SSCH) commands issued (physical I/Os)

Device Connect Time
The amount of time a particular device is dedicated for the I/O transfer

Channel Usage
The percentage of time a channel is busy initiating, transferring, or
completing the movement of data between a device and the CPU

While EXCPs are often used as a measure of I/O activity, their counts can be
extremely misleading. For example, one EXCP can be used to transfer a few bytes
or dozens of megabytes! SSCHs measure the number of physical I/Os to a data set
and thus can be more useful than EXCPs. A complete analysis of total I/O
performance should consider device connect time, channel usage and SSCHs.

Elapsed Time
Elapsed time refers to the amount of “wall clock” time from initiation to termination
of the application. For typical sorting applications, elapsed time is composed
primarily of I/O time, with CPU time and I/O queueing time also contributing
significantly.

The elapsed time for an application can differ from run to run, depending upon the
amount of competition from other applications for system resources. Accurate
elapsed time comparisons can be done only if the system has no other applications
running.

DASD Utilization
In certain environments, the DASD space usage is a more important characteristic
of an application’s performance than CPU time or elapsed time. Inefficient DASD
usage is usually measured in terms of the amount of DASD space that is allocated,
compared to the amount of DASD actually needed. Frequently, large amounts of
DASD space are wasted as a result of inefficient blocking.

Introduction

Chapter 1. Introduction 5

|
|

|
|
|

6 DFSORT Tuning Guide R14

Chapter 2. DFSORT Performance Features

The performance of a DFSORT application is largely determined by the use of a
special set of product features. This chapter provides an introduction to the
performance features of DFSORT including:

v Blockset technique

v OUTFIL

v Hipersorting

v Sorting with data space

v Dynamic Storage Adjustment

v Cache fast write

v ICEGENER

v Compression

v Striping

v Dynamic allocation of work data sets

v System-determined block size

v IDCAMS BLDINDEX

v DFSORT’s Performance Booster for The SAS** System

v SmartBatch Pipes

v VIO in expanded storage

How to use these features to gain the most effective performance from DFSORT is
described in “Chapter 4. Installation Considerations” on page 25 and in “Chapter 5.
Run-Time Considerations” on page 41.

Blockset Technique
The Blockset technique is DFSORT’s most efficient method for sorting, merging,
and copying, using optimized algorithms and using IBM hardware efficiently.
DFSORT uses Blockset whenever possible. DFSORT’s other techniques,
Peerage/Vale and Conventional, are not as efficient as Blockset and are only used
when Blockset cannot be used.

The Blockset technique can reduce CPU time, I/O activity, and elapsed time. It is
strongly recommended that you remove any obstacles to using Blockset whenever
possible. For the purposes of this book, any recommendations to improve
performance assume that Blockset is the DFSORT technique used.

It is worth checking to see if Blockset was used for a given application; message
ICE143I in the SYSOUT data set shows which technique was used. If ICE143I is
not shown or shows that a technique other than Blockset was selected, resubmit
the application with a SORTDIAG DD statement (unnecessary if the application
already had a SORTDIAG DD statement or if your site has specified installation
option DIAGSIM=YES). Additional DFSORT messages and diagnostic information
are then shown, including:
v ICE802I, which shows the technique used
v ICE800I or error messages

ICE800I gives a code indicating why Blockset was not used. If the code is 1, one or
more error messages are also shown.

© Copyright IBM Corp. 1992, 1998 7

|

|

|

Note: Blockset messages are suppressed if another technique is selected, unless a
SORTDIAG DD statement is present, or installation option DIAGSIM=YES
has been specified for your site.

A common reason for not selecting Blockset is the use of work data sets on tape
devices. Blockset only supports tape devices for input and output data sets. It is
strongly recommended that you use DASD rather than tape for work data sets.

OUTFIL
OUTFIL is a control statement that allows you to create one or more output data
sets for a sort, copy, or merge application with only one pass over an input data
set. You can use multiple OUTFIL statements, with each statement specifying the
OUTFIL processing to be performed for one or more output data sets.

With a single pass over an input data set, OUTFIL can create:

v Multiple output data sets containing unedited or edited records

v Multiple output data sets containing different ranges or subsets of records. Those
records that are not selected for any subset can be saved in another output data
set.

OUTFIL has many additional features as well; see Application Programming Guide
for more details.

Benefits
Because OUTFIL allows you to create output data sets with only one pass over an
input data set, OUTFIL can improve performance. This is especially true for elapsed
time and EXCPs when you compare an OUTFIL job to create many output data
sets with many non-OUTFIL jobs each creating one output data set.

Hipersorting
Hipersorting is DFSORT’s ability to use Hiperspaces for sorting. When virtual
storage (main storage and data space) is smaller than the input data set to be
sorted, DFSORT uses temporary intermediate storage to perform the sort. This
intermediate storage can be of two types; it can be a Hiperspace or it can be DASD
work data sets. DFSORT’s use of Hiperspaces for intermediate storage, alone or in
combination with work data sets, is called Hipersorting.

See MVS/ESA Application Development Guide - Extended Addressability for more
detailed information about Hiperspaces and data spaces.

Benefits
A Hiperspace is a high-performance data space that resides in expanded storage
and is backed by auxiliary storage (if necessary). Because Hiperspace data
generally resides in expanded storage, it is worth comparing how programs access
data from expanded storage and from DASD. Unlike data space pages, Hiperspace
pages are never in central storage.

Expanded Storage
A program’s request for data in expanded storage results in a synchronous
or other high-speed transfer into central storage. Upon completion, the
program continues.

Performance Features

8 DFSORT Tuning Guide R14

|
|
|

|
|
|
|
|

|
|
|
|

DASD Storage
If the request is for data from DASD, an asynchronous I/O operation is
started, the program interrupted, and control returned to the dispatcher to
dispatch another program. When the I/O completes, the program waits to
be dispatched again, since it is now able to process its data.

A Hiperspace read or write operation involves the transfer of data between
expanded storage and central storage, whereas a DASD I/O operation involves the
transfer of data between DASD and central storage. Since data movement from
expanded storage is faster than from DASD, Hipersorting improves elapsed time.
Note that DASD volumes connected to cached controllers can provide significant,
but smaller, elapsed time improvements compared to Hipersorting. Hipersorting
eliminates the need for work data set I/O, therefore eliminating EXCPs and channel
usage for the work devices.

Operation
In addition to DFSORT, expanded storage can be used by many other applications
and system components, such as DB2 hiperpools, VSAM hiperspace, hiperbatch,
virtual lookaside facility (VLF), VIO, and the paging subsystem. To avoid overusing
expanded storage, which can lead to paging data set space shortages and
increased system paging activity, DFSORT uses several safeguards.

To begin with, DFSORT is always aware of the future expanded storage needs of
other concurrent Hipersorting applications. A DFSORT application never attempts to
back its Hiperspace data with expanded storage that is needed by another
Hipersorting application.

Next, DFSORT dynamically determines the amount of available expanded storage
throughout the run. “Available” expanded storage is the expanded storage used to
back new Hiperspace data. It consists of two types:

v Free expanded storage is expanded storage that is not being used by any
application.

v Old expanded storage is expanded storage that is being used by other
applications, but whose data has been unreferenced for a long period of time.
This time period is long enough that the system migrates the data to auxiliary
storage to make room for new hiperspace data.

Knowing both the amount of expanded storage needed by other Hipersorting
applications and the amount of available expanded storage, along with the values of
DFSORT installation options EXPMAX, EXPOLD, and EXPRES, DFSORT can
decide at any time in a Hipersorting run to switch from using Hiperspace to using
DASD work data sets. This greatly reduces the likelihood of overusing expanded
storage, especially as a result of multiple large concurrent Hipersorting applications.
It also allows sites to customize their total use of expanded storage by Hipersorting
applications through the EXPMAX, EXPOLD, and EXPRES installation options.

EXPMAX limits the total amount of available expanded storage that can be used at
any one time by all Hipersorting applications on a system. EXPOLD limits the total
amount of old expanded storage that can be used at any one time by all
Hipersorting applications on a system. EXPRES reserves a specified amount of
available expanded storage for use by non-Hipersorting applications.

Hipersorting can be used in two modes:

Performance Features

Chapter 2. DFSORT Performance Features 9

|
|
|
|
|
|
|
|

v If sufficient expanded storage is available for the entire input data set (plus the
required overhead), all of the intermediate data is written to Hiperspace, and
DASD work data sets are not needed. This is referred to as Hiperspace-only
mode.

v If the above conditions are not met, but sufficient expanded storage is available
to provide a performance benefit for the job, then Hiperspace is used in
conjunction with DASD work data sets. This is referred to as Hiperspace-mixed
mode.

When Hipersorting cannot be used, DFSORT uses DASD work data sets to store its
intermediate data, which is referred to as DASD-only mode. Note that
Hiperspace-only mode usually provides the best performance when compared to
Hiperspace-mixed and DASD-only modes. However, this is not always true for
Hiperspace-mixed mode when compared to DASD-only mode. Due to the additional
Hiperspace overhead, the use of DASD-only rather than Hiperspace-mixed mode is
often more advantageous in terms of performance, and therefore DFSORT may
choose not to use Hipersorting.

When making performance comparisons for Hipersorting, remember that the same
job sorting the same data set, run on the same system but at different times, may
exhibit different performance characteristics. This is due to different modes being
used as a result of variations in the system’s expanded storage paging activity.
These variations can make it difficult to measure the benefits of using Hipersorting
for a site. If you are interested in obtaining a realistic measure of the benefits that
Hipersorting is providing on your system, you need to concentrate on the combined
performance characteristics of a set of sort jobs, rather than on those of individual
sorts. For example, you could run a specific set of sort jobs (a workload) repeatedly
at different times over the span of a few days and alternately turn on or turn off
Hipersorting. The resulting total elapsed times and EXCP counts for all the jobs run
with Hipersorting compared to those run without Hipersorting will give you a good
measure of the benefits, since this kind of workload measurement does not depend
on any single job using Hipersorting.

Sorting with Data Space
Dataspace sorting is a DFSORT capability that uses data space. DFSORT can use
dataspace sorting to improve the elapsed time and CPU time performance for
selected sort applications.

Benefits
A data space is a large contiguous area of virtual storage that is backed by central,
expanded, or auxiliary storage, whichever is necessary, as determined by the
system. The benefit of sorting with data space is twofold:

v Due to the potentially large size of a data space, dataspace sorting enables a
greater percentage of sort jobs to be processed completely within main storage,
without the need to write intermediate data to DASD. In-main-storage sorts are
usually the most efficient of all sorts. Consequently, dataspace sorting can
dramatically reduce CPU and elapsed times, as well as EXCP counts and
channel usage.

v If an in-main-storage sort is not possible, dataspace sorting usually picks the
optimal amount of virtual storage for its data space. This is frequently larger than
the default amount of main storage and enables DFSORT to sort larger amounts
of data at a time before writing them to the work data sets. This often provides a
significant savings in elapsed time, I/O activity, and CPU time.

Performance Features

10 DFSORT Tuning Guide R14

|
|
|

|
|
|
|
|

Not every sorting application can use dataspace sorting, and, even for those sorts
that can use dataspace sorting, it may be more advantageous not to use it under
certain circumstances. DFSORT dynamically determines the possible performance
benefits of using data space for each run, and chooses not to use dataspace
sorting if there is no performance advantage to be gained from it.

Operation
The use of dataspace sorting is affected by the system’s IEFUSI exit, which
determines the system’s default values for Hiperspaces and data spaces. In
addition, dataspace sorting can be controlled with DFSORT’s DSPSIZE parameter
which can be specified as an installation-wide default through ICEMAC, overridden
at run-time with an EXEC PARM option or OPTION control statement, or overridden
with an installation-wide ICEIEXIT exit routine.

Dataspace sorting makes heavy use of the system’s central storage resources,
which can affect system paging. To minimize the impact on the paging subsystem,
DFSORT queries the system about paging activity before starting the sorting
process. In the case of heavy system activity, dataspace sorting is not used since
DFSORT’s use of a data space may have an adverse effect on system paging.

See “Chapter 4. Installation Considerations” on page 25 and “Chapter 5. Run-Time
Considerations” on page 41 for further details on how best to tune DFSORT’s use
of data space sorting.

Dynamic Storage Adjustment
Dynamic Storage Adjustment (DSA) is DFSORT’s ability to automatically increase
the amount of virtual storage committed to a sort when doing so should significantly
improve performance. Like dataspace sorting, DSA lets DFSORT tune the right
amount of virtual storage for a sort application.

Benefits
Increasing the amount of virtual storage available to DFSORT can significantly
improve the performance of many sort applications, especially large sorts. The
optimal amount of virtual storage varies with the amount of data being sorted.
Consequently, the best performance and most efficient use of virtual storage can
only be obtained by tuning the virtual storage of each individual sort. DSA does
most of this tuning automatically, relieving system and application programmers of
the task. By using the optimal amount of virtual storage, DFSORT maximizes its
performance while minimizing the impact of DFSORT applications on the system.

Operation
DFSORT’s use of virtual storage from the primary address space is limited by
several factors, most notably system (for example, REGION, IEFUSI) and DFSORT
(for example, TMAXLIM, SIZE) parameters, defaults, and exits. While DFSORT can
never exceed the system limits, those limits usually exceed the virtual storage
DFSORT needs for most applications. As a result, the DFSORT limits usually
control the amount of virtual storage used by DFSORT.

Dynamic Storage Adjustment permits a range to be specified for the default amount
of virtual storage for sorts, provided SIZE/MAINSIZE=MAX is in effect. This range
starts with the value specified for TMAXLIM and goes up to the value specified for
DSA. For most sorts, DFSORT limits its use of virtual storage to TMAXLIM.

Performance Features

Chapter 2. DFSORT Performance Features 11

|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

However, for large sorts, DFSORT automatically optimizes performance by
increasing the amount of virtual storage it uses, up to but not exceeding the DSA
value.

See “Chapter 4. Installation Considerations” on page 25 for further details on the
best way to tune DFSORT’s use of DSA.

Cache Fast Write (CFW)
The term cache fast write (CFW) is normally used to refer to the capability of the
cached 3990 storage control units to use cache memory to improve average I/O
times. In this book, cache fast write is also used to refer to DFSORT’s ability to take
advantage of the storage control unit’s cache fast write function, by writing data sets
to and reading data sets from cache only.

Benefits
You can gain significant elapsed time savings by using cache fast write. The
benefits of CFW are twofold:

v When writing data to the work data sets, the write operations can complete at
cache speed rather than at DASD speed, as long as overall cache activity
permits it. If the cache usage is very heavy, then there may be very little or no
benefit to using CFW, since the majority of write operations will be immediately
directed to DASD.

v When reading data back from the work data sets, the read operations can
complete at cache speed rather than at DASD speed, as long as the data to be
read still resides in cache. If the required data does not reside in cache, a DASD
access is required and no performance benefit results. The higher the cache
activity, the less the performance improvement with CFW, because it is more
likely that written data will be destaged to DASD before it can be read back.

Operation
DFSORT’s use of cache fast write for the work data sets can be controlled with
installation option CFW, and run-time option CFW or NOCFW on the DEBUG
statement. Note that cache fast write can only be used if the DFSORT SVC has
been installed.

ICEGENER
DFSORT’s ICEGENER facility allows you to more efficiently process IEBGENER
jobs. Qualifying IEBGENER jobs are processed by the equivalent, but more
efficient, DFSORT copy function. If the DFSORT copy function cannot be used (for
example, IEBGENER control statements are specified), control is automatically
transferred to the IEBGENER program.

If your site has installed ICEGENER as an automatic replacement for IEBGENER,
you need not make any changes to your jobs to use ICEGENER. If your site has
not chosen automatic use of ICEGENER, you can use ICEGENER by substituting
the name ICEGENER for IEBGENER on any EXEC statement or LINK macro call.

The use of ICEGENER rather than IEBGENER for copy applications can result in
significant savings in CPU time and EXCP counts. Figure 1 on page 13 shows an
example of the tremendous performance advantages of ICEGENER over
IEBGENER.

Performance Features

12 DFSORT Tuning Guide R14

|
|
|

|
|

|
|

Compression
You can get significant DASD storage reduction for many types of data by using
sequential or VSAM compression. This reduction in DASD storage can result in an
equivalent savings in elapsed time for DFSORT to read or write the data. It is
recommended that you use compressed sequential or VSAM data sets for input or
output as a way to improve elapsed time performance.

Striping
The use of sequential striping can significantly reduce the elapsed time DFSORT
spends reading and writing data. It is recommended that you use sequential striping
for your DFSORT input and output data sets as a way to improve elapsed time
performance.

Dynamic Allocation of Work Data Sets
When a sort application cannot be performed entirely in virtual storage, DFSORT
must use work space. Dynamic allocation of work data sets makes more efficient
use of this work space.

You set the DYNAUTO installation option to control whether dynamic allocation is
used automatically, or only when requested by the DYNALLOC run-time option.
DYNAUTO also controls whether dynamic allocation or JCL allocation takes
precedence when JCL work data sets are specified.

DYNAUTO can be set as follows:

0

20

40

60

80

100

ICEGENER

CPU Time EXCPsElapsed Time

100 100 100

IEBGENER

9

Percentage

99

2

Figure 1. ICEGENER versus IEBGENER Copy Comparison

Performance Features

Chapter 2. DFSORT Performance Features 13

v If DYNAUTO=IGNWKDD, dynamic allocation takes precedence over JCL
allocation. If you want the opposite result for selected applications, use the
USEWKDD run-time option.

v If DYNAUTO=YES, JCL allocation takes precedence over dynamic allocation. If
you want the opposite result, remove all JCL allocation statements.

v If DYNAUTO=NO, dynamic allocation of work data sets is not used unless you
specify the DYNALLOC run-time option. JCL allocation takes precedence over
dynamic allocation.

Dynamic allocation of work data sets has the following advantages:

v As the characteristics (for example, file size and virtual storage size) of an
application change over time, DFSORT can automatically optimize the amount of
dynamically allocated work space for the application. This eliminates unneeded
allocation of DASD space.

v As the amount of Hiperspace available to the application varies from run to run,
DFSORT can automatically adjust the amount of space it dynamically allocates to
complement the amount of Hiperspace. This eliminates unneeded allocation of
DASD space.

v The amount of work space actually used is often less than the amount allocated.
DFSORT tries to minimize dynamic over-allocation while making certain that the
application does not fail due to lack of space. With JCL allocation, you could
minimize the amount of allocated space manually, but this might require changes
to JCL allocation as the characteristics of the application change.

System Determined Block Size (SDB)
Use the system-determined block size (SDB) facility whenever possible to allow the
system to select optimal block sizes for your output data sets. SDB provides better
use of output DASD and improved elapsed time. DFSORT’s use of SDB can be
controlled using installation options SDB and SDBMSG.

IDCAMS BLDINDEX
DFSORT provides support that enables IDCAMS BLDINDEX to automatically use
DFSORT to improve the performance of most BLDINDEX jobs that require
BLDINDEX external sorting.

DFSORT’s Performance Booster for The SAS System
DFSORT provides significant CPU time improvements for The SAS System
applications. To take advantage of this feature, contact SAS Institute Inc. for details
of the support they provide to enable this enhancement.

SmartBatch Pipes
The use of SmartBatch input and output pipes can significantly reduce elapsed time
as a result of the parallelism inherent in piping the data from “writer” to concurrent
“reader” jobs. For example, if a SORTOUT data set is piped, DFSORT output
processing can be overlapped with the receiving job’s input processing. In addition,
because a pipe is a virtual storage queue rather than a DASD or tape data set,
data transfer time and elapsed time can be reduced significantly.

We recommend using SmartBatch pipes for your DFSORT input and output data
sets when appropriate, as a way to improve elapsed time and data transfer time.

Performance Features

14 DFSORT Tuning Guide R14

|

|
|
|
|
|
|

|
|

Refer to the SmartBatch V1R1 Overview and SmartBatch V1R1 Users Guide and
Reference for more detailed information on using SmartBatch pipe data sets.

VIO in Expanded Storage
Temporary non-VSAM input and output data sets can be held in expanded storage
using Virtual I/O (VIO). Because expanded storage is used rather than a DASD or
tape data set, data transfer time and elapsed time can be reduced significantly
(provided that the entire data set can fit in the available expanded storage). For
example, if a SORTOUT set is allocated as a temporary VIO data set in expanded
storage, DFSORT’s output processing as well as the receiving job’s input
processing can show improved performance.

We recommend using VIO in expanded storage for your DFSORT input and output
data sets, when appropriate, as a way to improve elapsed time and data transfer
time.

Note that VIO is generally not recommended for work data sets.

Performance Features

Chapter 2. DFSORT Performance Features 15

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|

16 DFSORT Tuning Guide R14

Chapter 3. Environment Considerations

While DFSORT automatically optimizes many of its tuning decisions to improve
performance, the environment in which it runs affects its overall performance and,
therefore, the programs and applications that use DFSORT. DFSORT is designed to
take advantage of the major components of IBM computer systems.

The purpose of this chapter is to describe how DFSORT modifies its operation to
take advantage of these components and the benefits it derives from them.

The majority of information in this chapter applies only to sorting applications. While
copying and merging are also commonly used features of DFSORT, it is sorting that
uses the most resources and is the most important to tune.

This chapter includes the following information:

v Storage hierarchy

v Virtual storage

v System-managed storage

Storage Hierarchy
Within an IBM computer system, data resides across a storage hierarchy. Each
level of this hierarchy is represented in hardware by a different component, and the
amount of each component in a system is usually variable between some minimum
and maximum levels. A typical representation of these components (from top to
bottom) would be:
1. Processor cache
2. Central storage
3. Expanded storage
4. Storage control cache
5. DASD
6. Tape

The components at the top of the hierarchy (processor cache, central storage) are
somewhat expensive on a per-byte basis (and thus relatively small in capacity), but
have very fast access times. In contrast, the components at the bottom of the
hierarchy (DASD, tape) are relatively inexpensive and have very large capacities,
but their access rates are considerably slower. As you go from top to bottom in the
hierarchy, the components typically get less expensive per byte, have higher
capacities, and have slower access times.

DFSORT attempts to take advantage of all the levels of the storage hierarchy. The
following sections briefly describe how DFSORT accomplishes this.

Processor Cache
Processor cache is the special high-speed memory from which processors access
their instructions and data. This memory has a much faster access rate than central
storage, and is an integral part of IBM processors. It contains a copy of those
portions of central storage that have been recently referenced. When an instruction
or piece of data is needed by the processor and is not in the processor cache, a
“cache miss” takes place and the processor waits while a copy of the data is
brought into the cache. This results in higher CPU times.

© Copyright IBM Corp. 1992, 1998 17

DFSORT is designed to make efficient use of the processor cache by reducing
cache misses as much as possible.

Central Storage
Of all the components that affect DFSORT’s performance, central (or main) storage
is the most crucial. Sorting is a memory-intensive operation. Without enough central
storage to back the virtual storage needs of DFSORT, its performance (as well as
the performance of other applications on the system) degrades significantly due to
excessive system paging activity.

To sort efficiently, DFSORT needs large amounts of virtual storage. Its needs grow
with the amount of data being sorted; a data set four times as large as another
requires roughly twice as much virtual storage to sort with the same degree of
efficiency. If this virtual storage is not backed by central storage when DFSORT is
running, there is a noticeable performance degradation on the system.

Central storage also plays an important role in the use of data space sorting.
DFSORT bases its use of its very efficient data space sorting method on the
amount of central storage it can use without causing excessive paging on the
system. If too much central storage paging would result, DFSORT does not attempt
to use data space sorting.

See “Sorting with Data Space” on page 10 for more information about data space
sorting.

Expanded Storage
Expanded storage is an extension to central storage. Its access times are much
faster than auxiliary storage (DASD and tape). It is the first resource used to back
data residing in Hiperspaces, and is also used to off-load pages from central
storage that have not been referenced recently.

DFSORT takes advantage of expanded storage through its use of Hipersorting.
With Hipersorting, DFSORT uses a Hiperspace to hold some or all of its
intermediate data. This enables some or all of the work data set I/O to be replaced
with much faster transfers between central storage and expanded storage.

See “Hipersorting” on page 8 for more information about Hipersorting.

Storage Control Cache
Certain storage control models, such as the 3990, contain a special high-speed
(relative to the DASD) memory known as storage control cache. This cache serves
two purposes:

v When reading data from the DASD, if the data is already in the storage control
cache, the program can access it directly from the cache without having to wait
for the (relatively slow) DASD to retrieve it.

v When writing data to the DASD, by writing directly to the cache (through use of
cache fast write), applications can complete their write operations significantly
faster than if they had written to the DASD directly.

DFSORT takes advantage of the storage control cache by writing to its work data
sets with cache fast write enabled. This speeds up the time needed to write to
these work data sets as well as to read back from them.

Environment Considerations

18 DFSORT Tuning Guide R14

To benefit from DFSORT’s ability to use cache fast write (CFW), ensure that the
CFW feature is activated on your storage control units (if appropriate).

DFSORT also takes advantage of the storage control cache by selecting the
appropriate caching mode for input and output data sets. This reduces elapsed time
for DFSORT applications and also helps other non-DFSORT applications make
better use of the cache.

DASD
In most cases, DFSORT’s Blockset technique automatically adjusts itself to take
advantage of the geometry of the particular IBM DASD with which it is being run.
This is especially true for the work data sets, whose block sizes and distribution of
data play crucial roles in the performance of DFSORT.

The location of input, output, and work data sets, as well as the speed of the
DASDs on which they reside has a significant effect on the performance of a sort
application. For best results, work data sets should be placed on different storage
subsystems than the input and output data sets. This helps avoid channel, control
unit path, and device contentions. To attain the maximum performance benefit,
these data sets (or at least the input and output data sets) should be placed on the
fastest DASDs so that DFSORT can take advantage of their speed. Avoid using the
3390 Model 9 for work data sets since this device has slower random access
performance than other 3390 devices; it is designed to store large amounts of input
and output data sets which are accessed sequentially.

In general, while DFSORT has no control over where its data sets are allocated, it
does automatically optimize its access patterns based on data set location to
achieve the best possible performance.

When allocating DFSORT work data sets on devices attached to non-synchronous
storage control units or connected to ESCON channels, elapsed time may be
degraded for certain applications. To avoid this degradation, it is especially
important to follow the virtual storage guidelines described in “Virtual Storage
Guidelines” on page 49 and to ensure that DFSORT has an accurate knowledge of
the size of the data set being sorted. See Application Programming Guide for more
details about non-synchronous storage subsystem considerations.

In addition to data set location, certain data set characteristics, such as block size,
are also very important when considering performance. As mentioned before,
DFSORT automatically chooses an optimal block size for its work data sets. Using
DFSORT’s installation option SDB=YES enables DFSORT to choose optimal block
sizes for its output data sets on DASD as well. Of less importance, using installation
option SDBMSG=YES enables DFSORT to choose optimal block sizes for its
message data sets on DASD.

Tape
Tape is the least expensive media on a per-byte basis. It has the highest capacity
for data storage of any component in the storage hierarchy. But it also has a
relatively slow access time and must be accessed sequentially. However, automatic
tape libraries and IDRC compacted tape make tape a good choice for SORTIN and
SORTOUT.

Tape devices are not recommended for use with work data sets since a fast access
rate is critical and work data tends to be accessed in a nonsequential manner.

Environment Considerations

Chapter 3. Environment Considerations 19

|
|
|
|

|
|
|
|
|

Performance is significantly better when DASD devices are used for work data sets.
Note that you cannot use the efficient Blockset technique with tape work storage
devices.

Certain data set characteristics, such as block size, are important when considering
performance on tape devices. Using DFSORT’s installation option SDB=YES
enables DFSORT to choose optimal block sizes for its output data sets on tape. Of
less importance, using installation option SDBMSG=YES enables DFSORT to
choose optimal block sizes for its message data sets on tape as well.

Virtual Storage
Logically, DFSORT (like any other application) works within a virtual address space.
Installation defaults such as TMAXLIM and run-time options such as REGION and
MAINSIZE determine the size of this address space. With the exception of data
space sorting (see “Sorting with Data Space” on page 10 for a discussion of data
space sorting) this size remains constant throughout most of the sorting process.

DFSORT attempts to make the best use of the virtual storage it has available. If you
provide DFSORT with enough virtual storage, it might be able to sort the input data
set entirely in virtual storage (an “in-main-storage” sort) without need of work data
sets or Hiperspace. This is the preferred method of sorting small data sets up to a
few megabytes in size.

When an in-main-storage sort is not possible or practical, DFSORT processes a
portion of the input data set at a time, then combines all of these processed
portions together into the final sorted data set. It is here that DFSORT excels at
allocating virtual storage effectively in order to minimize both the number of portions
as well as the time spent combining the portions into the output data set.

With data space sorting, DFSORT creates a data space to help carry out its
processing. This is a new area of virtual storage, and is in addition to the original
(specified or defaulted) virtual storage requested. The size of the data space is
sufficient to guarantee an efficient sort (or data space sorting is not used).

In addition, DFSORT adjusts the size of the data space during processing, as
necessary, in response to system paging levels. When system paging levels rise,
DFSORT reduces its use of virtual storage (as long as this reduction does not
significantly degrade DFSORT performance).

DFSORT also tries to move as many of its data areas above 16MB virtual as it can
to help provide virtual storage constraint relief for the system.

Main Storage
Main storage is the portion of virtual storage in the primary address space that
DFSORT limits itself to using. In general, the more main storage you make
available to DFSORT, the better the performance for larger jobs. To prevent
excessive paging, insure that sufficient real storage is available to back up the
amount of main storage used. This is especially important with main storage sizes
greater than 32MB. The default amount of main storage that will be made available
to DFSORT is defined when it is installed.

DFSORT requires a minimum of 88KB, but to get better performance, use a much
larger amount of storage. The recommended amount is about 4MB. Improved

Environment Considerations

20 DFSORT Tuning Guide R14

|
|
|
|
|
|
|

performance is most noticeable with large input data sets. Guidelines for setting
these values are given in Table 2 on page 49 and Table 3 on page 50.

Although DFSORT can run some applications in the minimum of 88KB (below
16MB virtual), the minimum amount of main storage required for most applications
is more than 88KB.

System-Managed Storage
The Storage Management Subsystem (SMS) makes data set allocation very easy
and efficient. Having SMS manage the temporary data sets can be a good first step
in migrating to system-managed storage. However, the SMS automatic class
selection (ACS) routines can unintentionally affect DFSORT data set allocations and
job performance, so you might need to coordinate changes to the ACS routines with
the site’s storage administrator, as described here.

When any data set is allocated on an SMS system, the allocation request passes
through the system’s data class and storage class ACS routines. If the data set will
be system-managed, the request also passes through the system’s management
class and storage group ACS routines. There is only one set of ACS routines per
site, and they are very powerful. They can override DFSORT installation options,
such as VIO=NO, and can even override requests for a certain data, storage, or
management class, or a certain unit or volume.

As an example of how ACS routines can affect the performance of DFSORT
applications, consider a storage class ACS routine that assigns all temporary data
sets to the STANDARD storage class, as shown in Figure 2. The storage class is
then used to assign the temporary data sets to a storage group. Because the
routine does not differentiate between DFSORT temporary data sets and other
temporary data sets, the storage group ACS routine cannot selectively prevent
DFSORT temporary data sets from being assigned to VIO. Allocating temporary
data sets to VIO works well in most cases, but might not be desirable for DFSORT
temporary data sets, as explained in “VIO for DFSORT Data Sets” on page 53.

One way to avoid allocating DFSORT temporary data sets to VIO is to write the
ACS storage class routine so it assigns all DFSORT temporary output and work
data sets (for example, those with ddnames SORTOUT, SORTOFdd, SORTWKdd,
and SORTDKdd) to a special NONVIO storage class. Using the &DD variable is the
most efficient way to determine whether or not a data set is a DFSORT data set.
Because you cannot use the &DD variable to check the ddname in the storage

PROC 1 STORCLAS
......
......
SELECT

WHEN(&DSTYPE = 'TEMP')
SET &STORCLAS = 'STANDARD'

END
......
......

END /* END OF PROC */

Figure 2. ACS Storage Class Routine. &DSTYPE is used to assign temporary data sets to
the STANDARD storage class.

Environment Considerations

Chapter 3. Environment Considerations 21

|
|
|
|
|
|

group ACS routine, you must check for DFSORT temporary data sets in the storage
class ACS routine as shown in Figure 3.

The storage group ACS routine can then look for the SORT storage class, and
assign the data sets to a non-VIO storage group, as shown in Figure 4. The site’s
storage administrator will need to create the special NONVIO storage class and
alter the storage class and storage group ACS routines.

Be aware that the ddnames SORTOUT, SORTWKdd, and SORTDKdd can be
changed to other names when a program calls DFSORT. If other DFSORT output
and work data set ddnames are in common use at your site, you should also
include them in the ACS routines. This scheme does not work for OUTFIL data sets
specified with the FNAMES operand unless common ddnames are specified.

PROC 1 STORCLAS

/* DEFINE DFSORT TEMPORARY DATA SETS */

FILTLIST DFSORTDD INCLUDE(SORTWK*,SORTDK*,SORTOF*,'SORTOUT')
......
......

/* ASSIGN 'NONVIO' STORAGE CLASS TO DFSORT TEMPORARY DATA SETS */
/* AND 'STANDARD' TO ALL OTHER TEMPORARY DATA SETS */

SELECT
WHEN(&DSTYPE = 'TEMP')

IF (&DD = &DFSORTDD)
THEN SET &STORCLAS = 'NONVIO'
ELSE SET &STORCLAS = 'STANDARD'

OTHERWISE SET &STORCLAS = '
END
......
......

END /* END OF PROC */

Figure 3. Storage Class ACS Routine. &DSTYPE and &DD are used to assign storage class
NONVIO for DFSORT temporary data sets. The ddnames of these temporary data sets
should be reserved names.

PROC 1 STORGRP
......
......

/* ASSIGN ALL TEMPORARY DATA SETS THAT ARE NOT DFSORT */
/* DATA SETS TO 'SGVIO' */

SELECT
WHEN(&DSTYPE = 'TEMP' && &STORCLAS; ¬= 'SORT')

SET &STORGRP = 'SGVIO','PRIME'

/* ASSIGN DFSORT TEMPORARY DATA SETS TO 'PRIME' */

OTHERWISE SET &STORGRP = 'PRIME'
END
......
......

END /* END OF PROC */

Figure 4. Storage Group ACS Routine. &DSTYPE and &STORCLAS¬=SORT are used to
prevent VIO allocation for DFSORT temporary data sets. PRIME is a pool storage group
used for most data sets.

Environment Considerations

22 DFSORT Tuning Guide R14

|
|

|
|
|
|
|

Note: Filtering on SORTIN in the ACS routines cannot prevent DFSORT temporary
input data sets from being allocated to VIO. These data sets are allocated in
preceding steps and passed to DFSORT. Thus, SORTIN is not the ddname
used when these data sets are allocated.

If the only DFSORT temporary data sets are dynamically allocated work data sets,
another way to avoid VIO allocation is to use a non-VIO generic device type for the
installation option DYNALOC and the run-time option DYNALLOC. The storage
group ACS routine could then be written to assign a pool storage group to data sets
with that generic device type. Again, the site’s storage administrator will need to
establish a non-VIO generic device type and alter the storage group ACS routine.

There might be other cases as well where the site’s ACS routines unintentionally
alter DFSORT performance or data set allocation. Be aware of this, and if you
encounter problems, consult with your storage administrator to work out a joint
solution.

Environment Considerations

Chapter 3. Environment Considerations 23

24 DFSORT Tuning Guide R14

Chapter 4. Installation Considerations

Improving the performance of DFSORT consists of a number of activities, including:
v Tuning on a site-wide or system level
v Tuning of individual applications
v Designing efficient applications

To some extent, the success of each depends upon the success of the others. For
instance, suppose we have a DFSORT application which has been carefully
designed and tuned, and would be a good candidate for data space sorting. It might
be adversely affected by the site’s decision to set the default DSPSIZE parameter
to 0. Such a setting would turn off dataspace sorting (unless the programmer has
specifically overridden it in the application).

In a similar fashion, suppose that a significant site-wide tuning effort had been done
to find a sufficiently large value for the installation parameter TMAXLIM. This
parameter controls DFSORT’s default maximum virtual storage. If a programmer
overrides this default by specifying an unusually small SIZE or MAINSIZE value in
an application, the application might make larger demands on the system’s DASD
and processor resources. This, in turn, could cause performance problems for that
application as well as any other active applications on the system.

Even the best system and application tuning may be wasted on applications that
use sorts unnecessarily. For example, an application that sorts two already sorted
data sets into one could be replaced with a more efficient merge application.
Likewise, an application that uses a sort to extract a subset of the records, but does
not rearrange the records in any way, could be replaced with a more efficient copy
application.

This chapter offers advice for system programmers and application developers who
are responsible for installing and using DFSORT. It includes the following topics:

v Installing DFSORT

v Understanding storage options

v Using DFSORT capabilities

v Changing installation defaults

v Understanding installation performance options

v Using installation exits

DFSORT Installation
The way DFSORT is installed can affect its performance. This section explains
some of the things you should consider.

Running DFSORT Resident
By running DFSORT resident, you can gain three performance benefits:

v Two or more applications can use the same copy of DFSORT in main storage at
the same time. This enables central storage to be used more efficiently and cuts
down on system paging.

v The DFSORT load modules do not have to be loaded each time DFSORT is run.
This also saves unnecessary paging and time. This is especially noticeable for
the smaller DFSORT applications, which tend to make up the bulk of DFSORT
jobs at most sites.

© Copyright IBM Corp. 1992, 1998 25

|

v The space for the DFSORT load modules is not charged against the virtual
storage limits of individual applications. This saves storage that can be used by
DFSORT to do a more efficient sort.

Since DFSORT is invoked so frequently, it is a prime candidate for running resident.
When the DFSORT ICEGENER facility is used to replace IEBGENER, as described
in “ICEGENER”, DFSORT’s use greatly increases, making it even more important to
run DFSORT resident.

DFSORT SVC
The DFSORT-supplied SVC enables DFSORT to run authorized functions without
itself being authorized. In particular, the following performance-related functions are
impaired if DFSORT’s SVC is not available:

SMF type-16
DFSORT’s type-16 SMF record contains useful information for analyzing the
performance of DFSORT (see “Using SMF Data” on page 78). Without the
SVC, DFSORT cannot write the SMF record to an SMF system data set,
although the record can still be obtained through an ICETEXIT routine. If
DFSORT’s SMF feature is activated (installation or run-time option
SMF=SHORT or SMF=FULL) and a properly installed SVC is not available,
then all DFSORT applications will abend.

Cache fast write
Cache fast write (CFW) enables DFSORT to save elapsed time because
DFSORT is able to write its intermediate data into storage control cache,
and read it from the cache (see “Cache Fast Write (CFW)” on page 12).
Without the SVC, DFSORT cannot use CFW, and issues message ICE191I.
Processing continues with possibly degraded elapsed time performance.

Caching mode
For storage control units that support cache, DFSORT selects the caching
mode that appears to be the best for the circumstances. In particular, this
enables DFSORT to bypass the cache altogether when it appears it is not
beneficial to use the cache. This helps other applications, including other
DFSORT applications, make better use of the cache. Without the SVC,
DFSORT cannot set these caching modes, and issues message ICE191I.
This results in the default modes being selected, with possibly degraded
system and DFSORT elapsed time performance.

In addition to the functions described above, there are other performance
enhancements that are available to DFSORT through use of the SVC.

Note: It is strongly recommended that you make the DFSORT SVC available for
best performance. Make sure that the installation of the SVC has been
completed correctly so that the SVC can be used.

How the SVC is installed depends on whether you are replacing an earlier DFSORT
release, installing a new release to coexist with an earlier release, or installing
DFSORT for the first time. Make sure that the installation option of SVC is set to
correspond to the way you install the SVC. See Installation and Customization for
complete details on installing the DFSORT SVC.

ICEGENER
At many sites, the copy utility IEBGENER is a frequently used program. Actions that
improve its performance greatly benefit user productivity and resource utilization.

Installation Considerations

26 DFSORT Tuning Guide R14

|
|
|
|

DFSORT’s ICEGENER facility allows qualifying IEBGENER jobs to be routed to the
more efficient DFSORT copy function. In most cases, using the DFSORT copy
function instead of IEBGENER requires less CPU time, less elapsed time, and
results in fewer EXCPs (see Figure 1 on page 13). If the DFSORT copy function
cannot be used, DFSORT automatically transfers control to the IEBGENER utility.
You can install ICEGENER so that your existing IEBGENER jobs do not require
changes.

These are some of the circumstances that prevent the use of ICEGENER:
v A SYSIN DD statement other than SYSIN DD DUMMY is present.
v Detection of an error before DFSORT has started the copy operation
v Any condition listed in DFSORT message ICE160A as follows:

1 The SYSUT1 or SYSUT2 data set was BDAM.
2 FREE=CLOSE was specified.
3 An attempt to open a data set caused a system error.
4 The SYSUT1 or SYSUT2 data set resided on an unsupported device.
5 ASCII tapes had the following parameters:

(LABEL=AL or OPTCD=Q) and RECFM=D and BUFOFF¬=L

or

(LABEL=AL or OPTCD=Q) and RECFM¬=D and BUFOFF¬=0
6 An attempt to read the DSCB for the SYSUT1 data set caused an error.
7 An attempt to read the DSCB for the SYSUT2 data set caused an error.
8 The SYSUT1 data set had keyed records.
9 User labels were present.
10 A MODS statement Exx operand had SYSIN in the third parameter or T

or S in the fourth parameter (that is, dynamic link-editing was requested.)

Under such circumstances, DFSORT transfers control to IEBGENER. However,
IEBGENER may not be able to process the copy application either.

See Installation and Customization for complete details on installing ICEGENER as
an automatic replacement for IEBGENER.

Storage Options
By using appropriate values for DFSORT installation storage options, you can
ensure that the majority of applications have sufficient virtual storage. If the
IBM-supplied installation default value for an installation storage option is
inappropriate for the majority of DFSORT applications at your site, you should
change it to a more appropriate value. For specific applications, the installation
values can be overridden using run-time options. See Installation and Customization
and Application Programming Guide for details of DFSORT storage options and the
relationships between these options.

Recommendations for Storage Options
You must provide sufficient virtual storage to DFSORT using the guidelines given in
“Virtual Storage Guidelines” on page 49 and “Virtual Storage and Sorting with Data
Space” on page 49.

The following installation storage option values are recommended:

SIZE The default, SIZE=MAX, is recommended. This enables DFSORT to use as
much virtual storage as possible, both above and below 16MB virtual,
subject to the limits set by MAXLIM and TMAXLIM.

Installation Considerations

Chapter 4. Installation Considerations 27

|

|

|

When installation option SIZE=MAX, EXEC PARM option SIZE=MAX, or
run-time option MAINSIZE=MAX is in effect, the TMAXLIM, RESALL, and
RESINV options are used. These options are not used when SIZE=n or
MAINSIZE=n is in effect.

You should also be aware of how the JCL REGION parameter can affect
DFSORT virtual storage allocation. While subject to the constraints of your
site’s IEFUSI and IEALIMIT exits, the JCL REGION value limits the amount
of below 16MB virtual storage.

DFSORT attempts to place as much of its storage as possible above 16MB
virtual. DFSORT, however, still needs sufficient storage below 16MB virtual
to run effectively. In general, a REGION value of at least 512KB is best. If
DFSORT is called by a program, the REGION value should be large
enough to allow sufficient storage for DFSORT and the program. If E15 or
E35 user exits are used, a larger REGION value might improve
performance because these functions use more storage below 16MB
virtual.

In general, the minimum of:
v REGION plus OVERRGN
v SIZE or MAINSIZE
v MAXLIM

determines the maximum storage available below 16MB virtual. Thus, with
REGION=100K, OVERRGN=65536 (64KB), SIZE=4194304 (4MB), and
MAXLIM=1048576 (1MB), a total of 4MB is available to DFSORT, but only
164KB can (and probably will) be available below 16MB virtual. On the
other hand, if REGION=2M and SIZE=819200 (800KB), then a total of
800KB is available to DFSORT and all of it can (but probably will not) be
allocated below 16MB virtual.

If the available storage below 16MB virtual is insufficient, DFSORT issues
message ICE039A, which indicates the minimum additional storage
required below 16MB virtual. Although the application might run if you add
the minimum storage indicated, it is recommended that you increase either
the REGION value, or the SIZE or MAINSIZE value (or both) to provide
sufficient virtual storage for the application to run efficiently.

The EXEC PARM option SIZE=n or OPTION statement option MAINSIZE=n
can be used to allow more (or less) storage for specific applications for
which the installation default is not appropriate. For example, you might
want to specify MAINSIZE=8M to improve performance for a critical large
application when your installation default is 4MB.

When SIZE=n or MAINSIZE=n is in effect, RESALL and RESINV are not
used. Generally, this does not cause a problem, but if it does you should
ensure that the user exit size values in your MODS statement, if any, are
correct. Because the user exit size in the MODS statement is only an
estimate, you can raise it if necessary to allow more reserved storage.
Alternatively, you could raise the REGION value or go back to using
SIZE=MAX or MAINSIZE=MAX to resolve the problem. See Installation and
Customization for details of the relationships between SIZE, MAINSIZE,
RESALL, RESINV, REGION, and other storage parameters.

TMAXLIM
Although different sites have different requirements, experience indicates
that the TMAXLIM default of 4MB is a good general purpose value. Raising

Installation Considerations

28 DFSORT Tuning Guide R14

|
|
|
|
|
|
|
|

TMAXLIM to as high as 16MB might provide additional performance
benefits, particularly if a high percentage of your site’s DFSORT usage is
spent on large sorting applications.

Alternatively, you could specify SIZE=n or MAINSIZE=n at run-time to make
more (or less) storage available for specific DFSORT applications.

DSA DSA allows DFSORT to change the value of TMAXLIM dynamically if doing
so should improve the performance of a sort job. In general, the default of
32 (MB) is sufficient to handle most sorts, but if your site runs very large
sorts (multiple GB of input data), you might consider raising this to 64 or
128.

MAXLIM
The default of 1MB is generally sufficient. On the other hand, raising
MAXLIM above 1MB might provide additional performance benefits for
applications that cannot use the maximum amount of storage above 16MB
virtual, providing that the REGION value is also raised an equivalent
amount. DFSORT performance might be improved by larger MAXLIM and
REGION values when E15 or E35 user exits are used.

MINLIM
A MINLIM value of at least the default value of 440KB is recommended.
The major reason for not raising MINLIM is if your site has applications that
fail with higher MINLIM values (and for which there is no easy fix for the
failures).

The MINLIM value is important only for jobs which specify a SIZE or
MAINSIZE value that is less than the MINLIM value. By not using a value of
MAX, these jobs become locked into a specific virtual storage limit. They
must also reserve storage without using RESALL and RESINV, usually by
making the SIZE or MAINSIZE value less than the REGION value or by
coding user exit sizes on a MODS control statement. Such applications are
prime candidates for your tuning efforts.

One way to improve the performance of these applications is to raise the
MINLIM value (for example, to the MAXLIM value). This enables such
applications to run with a larger amount of virtual storage. This strategy,
however, might cause some of these applications to fail due to insufficient
reserved storage. Using run-time options, you should change the failing
applications to use SIZE=MAX or MAINSIZE=MAX and set appropriate
values for user exit sizes (on the MODS control statement), RESALL, and
RESINV.

OVERRGN
The default and recommended values for this option are 64KB for
directly-invoked and 16KB for program-invoked applications.

RESALL
The default is 4KB and should normally not be modified. If a storage related
failure occurs when sufficient virtual storage (REGION and SIZE) has been
specified, try setting RESALL to a larger value to correct the problem.

RESINV
Normally, a RESINV value of 16KB is sufficient and is recommended.

ARESALL
ARESALL is seldom needed and can be kept at its default of 0.

ARESINV
ARESINV is seldom needed and can be kept at its default value of 0.

Installation Considerations

Chapter 4. Installation Considerations 29

||
|
|
|
|

See Installation and Customization for more information about these parameters.

DFSORT Capabilities
DFSORT provides several capabilities that allow you to maximize performance on
your system. These capabilities and recommendations for using them efficiently are
described in the sections that follow. The capabilities include:

v Sorting with data space

v Hipersorting

v Cache fast write (CFW)

Sorting with Data Space
Data space sorting is a DFSORT capability that uses data space. For a more
detailed description of this capability, see “Sorting with Data Space” on page 10.
The section that follows provides recommendations for using data space sorting to
improve DFSORT performance.

Recommendations for Sorting with Data Space
The recommended installation setting is DSPSIZE=MAX. This enables DFSORT to
dynamically determine the amount of data space to be used for dataspace sorting,
taking into account the size of the file being sorted and the paging activity of the
system.

Use of dataspace sorting should provide significant CPU and elapsed time
performance improvements for DFSORT applications. Because Hipersorting is
never used in conjunction with dataspace sorting, some applications may
experience an increase in EXCPs due to the use of work data sets rather than
Hiperspace for intermediate data. When your tuning efforts emphasize EXCP counts
over CPU and elapsed times, you may wish to turn off dataspace sorting by
specifying DSPSIZE=0.

If a number of large applications that use dataspace sorting start at the same time
on a system, resource contention for central storage could become a problem. If
central storage is overcommitted, paging and swapping rates increase significantly.
If this situation is likely to occur frequently at your site, it is recommended that you
place further restrictions on the use of dataspace sorting. This can be accomplished
by:

v Setting a DSPSIZE=n value as the installation default (rather than
DSPSIZE=MAX). The appropriate value to use for n is best determined by
experimentation; start with a low value and keep raising it by a few megabytes
until system paging rates are not adversely affected. In cases of severe
overcommitment of central storage, an installation default of DSPSIZE=0 may be
advisable.

v If resource contention is a problem only during specific time intervals at your site,
it is recommended that you use DSPSIZE=MAX as the value for your
environment installation modules, but use a time-of-day installation module to
restrict the DSPSIZE value for all jobs starting during these particular intervals. In
this manner, the majority of DFSORT applications at your site can still take
advantage of the performance benefits of using dataspace sorting, while at the
same time the system is protected from excessive central storage contention.
See “DFSORT Installation Defaults” on page 33 for more information on
environment and time-of-day installation modules.

Installation Considerations

30 DFSORT Tuning Guide R14

|
|
|
|
|
|
|
|
|

In general, DFSORT takes into account the effect on the application’s performance
and the effect on the system’s performance before using data space. If either effect
is not desirable, DFSORT chooses not to use dataspace sorting.

Hipersorting
Hipersorting is a DFSORT capability that uses Hiperspaces for sorting. For a more
detailed description of this capability, see “Hipersorting” on page 8. This section
recommends ways to use Hipersorting to improve DFSORT performance.

Recommendations for Hipersorting
The recommended installation settings for Hipersorting are:

v EXPMAX=MAX

v EXPOLD=MAX

v EXPRES=0

v HIPRMAX=OPTIMAL

These settings are described in detail in the sections that follow.

EXPMAX=MAX
This setting allows maximum Hipersorting activity on a system, especially
during periods when non-Hipersorting applications are making little use of
expanded storage. Setting EXPMAX=n, where n is a number of megabytes,
or EXPMAX = p%, where p% is a percentage of the configured expanded
storage, should only be considered when it is important for a site to limit the
total amount of expanded storage used by all Hipersorting applications on
the system. In this case, EXPMAX is a far better alternative than trying to
use storage isolation for the Hipersorting applications, since EXPMAX=n or
p% still allows access to all of the expanded storage by non-Hipersorting
applications.

EXPOLD=MAX
This setting is recommended only if mass migration of expanded storage
data to auxiliary storage does not cause a problem on your system. During
batch processing windows, migrating old data to auxiliary storage improves
overall system performance, since it allows more active data, like DFSORT
work data, to use expanded storage in place of DASD. But, the one-time
migration can have a negative impact on system performance, especially
online response time, during other periods.

If the migration of large amounts of old expanded storage data is a concern
for your site, set EXPOLD=n or p%. n, a number of megabytes, or p%, a
percentage of the configured expanded storage, is an amount of migration
that your site can tolerate at a single time. Do not set EXPOLD=0 since old
expanded storage data will never migrate due to DFSORT activity. Also, old
data will monopolize expanded storage and force DFSORT to use DASD in
place of expanded storage.

EXPRES=0
This setting allows DFSORT as much access to expanded storage as any
other application. If you want non-Hipersorting applications to have
preferred access to expanded storage, set EXPRES=n, where n is some
small number of megabytes or EXPMAX = p%, where p% is a small
percentage of the configured expanded storage. This is the preferred way
to control total DFSORT Hipersorting activity. This setting permits DFSORT
almost full use of available expanded storage when non-Hipersorting activity
is light, but greatly reduces the possibility of an overuse of expanded
storage when there is a sudden increase in the use of expanded storage by

Installation Considerations

Chapter 4. Installation Considerations 31

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

non-Hipersorting applications. Generally, you use this setting when the
non-Hipersorting applications have small, sudden needs for expanded
storage or the Hipersorting activity is unusually large.

HIPRMAX=OPTIMAL
This setting allows the DFSORT installation options EXPMAX, EXPOLD,
and EXPRES to control the total Hipersorting activity on a system. Before
the availability of dynamic Hipersorting (that is, prior to Release 13),
DFSORT only partially regulated total Hipersorting activity. Also, HIPRMAX
was the only installation option to control Hipersorting activity.

As a result, many sites found it useful to set HIPRMAX=n. With dynamic
Hipersorting, DFSORT has full control over total Hipersorting activity, and
you can customize your definition of HIPRMAX=OPTIMAL with the
installation options EXPMAX, EXPOLD, and EXPRES. HIPRMAX=n or p%
should now be reserved for use as a run-time override for applications that
have a special reason to limit the amount of Hiperspace available for
Hipersorting.

Hipersorting can provide considerable elapsed time and EXCP count
improvements for DFSORT sorting applications. However, the CPU time
may increase due to increases in the Hiperspace processing time (HPT). As
a result, if your tuning efforts emphasize CPU time over elapsed time and
EXCP counts, you may wish to turn off Hipersorting by specifying
HIPRMAX=0. However, most system programmers feel that the additional
HPT overhead is more than compensated for by the significant reductions in
elapsed time, channel usage, and EXCPs.

Cache Fast Write
Cache fast write (CFW) refers to the capability of the cached 3990 storage control
units to use cache memory to improve average input and output times. For a more
detailed description of this capability, see “Cache Fast Write (CFW)” on page 12.
This section provides recommendations for using cache fast write to improve
DFSORT performance.

Recommendations for Cache Fast Write
The recommended installation setting for cache fast write is CFW=YES. As
mentioned in “Benefits” on page 12, however, use of cache fast write benefits
DFSORT performance only if a significant percentage of work data can fit into the
cache, and if the overall cache activity is not too heavy. If the data in the cache is
continuously destaged to DASD, there is no performance advantage in using cache
fast write. It is most advantageous to set CFW=YES for small and intermediate
sized sorts where the work data sets are relatively small.

A setting of CFW=NO is advisable for sites where a large percentage of the
DFSORT workload consists of larger sorts or for sites where only very small
amounts of storage control cache is installed. This setting should also be used if the
size of the data set being sorted greatly exceeds the total amount of cache, if there
are more important applications other than sorts that need the cache, or if the total
activity on the cache with sorts is unacceptable.

For sites where only a few sorting applications are large, it may be more
appropriate to leave the global CFW=YES installation setting and disable cache fast
write for these individual large applications by using the DEBUG NOCFW run-time
parameter.

Installation Considerations

32 DFSORT Tuning Guide R14

|
|
|

|
|
|
|
|
|
|

DFSORT Installation Defaults
DFSORT is shipped with a set of installation defaults that are used by all DFSORT
applications at a site. These defaults set values for various DFSORT parameters.
They can be changed on a site-wide level by environment and time-of-day using
ICEMAC. See Installation and Customization for complete details of installation
defaults.

Most of the installation defaults can be overridden for specific applications by
setting the appropriate run-time option(s). In addition, some of the defaults (as well
as run-time options) can be overridden for all or a subset of applications at a site
through use of an ICEIEXIT routine. See Application Programming Guide for
complete details of DFSORT’s option override scheme.

ICEMAC
The ICEMAC macro can be used to modify the IBM-supplied installation default
values for DFSORT. Many of these installation options have an impact on
performance, including:
v Storage limits
v Hiperspace and data space limits
v Use of system-determined block size
v Reallocation of VIO work data sets
v Use of dynamic allocation for work data sets
v Number of work data sets for dynamic allocation
v Device type for dynamically allocated data sets
v Use of control interval access for VSAM data sets
v Number of I/O buffers to use
v IDRC tape compaction ratio
v Use of VERIFY, EQUALS, ALTSEQ, and LOCALE

Modifications to ICEMAC should be carefully chosen to reflect how you want
DFSORT to run at your site. You should only specify ICEMAC options if the
supplied default values are not acceptable. A USERMOD is required to update the
source distribution library to reflect the changed options.

Environment Installation Modules
ICEMAC allows separate sets of installation defaults for four environment
installation modules, based on how DFSORT was invoked, as follows:

JCL-invoked (ICEAM1)
DFSORT invoked directly (that is, not through programs) by batch jobs

Program-invoked (ICEAM2)
DFSORT invoked through batch programs

TSO-invoked (ICEAM3)
DFSORT invoked directly by foreground TSO users

TSO program-invoked (ICEAM4)
DFSORT invoked through programs by foreground TSO users

Time-of-Day Installation Modules
ICEMAC allows each of the environment installation modules to specify time-of-day
installation modules (ICETD1–4) with separate sets of installation defaults to be
used for runs on specific days and times (for example, from 8:00am to 5:00pm on

Installation Considerations

Chapter 4. Installation Considerations 33

|
|
|
|
|

|

|

|

|

|
|
|

Saturday and Sunday). You might want to take advantage of this feature to allow,
for example, DFSORT to use larger storage values (DSA, TMAXLIM, and so on) for
runs at certain days and times.

Listing the Installation Defaults with ICETOOL
You can use an ICETOOL job similar to the one in Figure 5 to list the installation
defaults actually in use at your site for the eight installation modules and the
IBM-supplied defaults they override, where appropriate.
See Installation and Customization for complete details of ICEMAC options and

procedures.

Note: The DFSORT installation defaults are based on customer feedback. They
should only be changed on an exception basis.

Installation defaults that are inappropriate for an application should be overridden
for that application with the corresponding run-time options. See Application
Programming Guide for complete details of run-time options.

Installation Options and Performance
Table 1 on page 35 shows site-wide ICEMAC installation options that influence the
performance of DFSORT, a description of each option, and additional comments
about the option.

//DFRUN JOB A402,PROGRAMMER
//LISTDEF EXEC PGM=ICETOOL,REGION=1024K
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//SHOWDEF DD SYSOUT=A
//TOOLIN DD *

DEFAULTS LIST(SHOWDEF)
/*

Figure 5. Using ICETOOL to List Installation Defaults

Installation Considerations

34 DFSORT Tuning Guide R14

|
|
|

|
|
|

Table 1. ICEMAC Options That Influence DFSORT Performance

Type ICEMAC Option Description Comments

Options that tailor
main storage

SIZE Upper limit for total storage above
and below 16MB virtual

Limited by TMAXLIM when
SIZE=MAX is in effect. The
recommended value is MAX.

OVERRGN Upper limit for storage over and
above that specified by REGION.

Limited by the IEFUSI or
IEALIMIT installation-wide exits
using the “region limit” values.

MAXLIM Upper limit for storage below
16MB virtual.

Always used. The recommended
value is 1MB.

TMAXLIM Upper limit for total storage above
and below 16MB virtual.

Only used when SIZE=MAX or
MAINSIZE=MAX is in effect. The
recommended value is 4MB.

DSA Upper limit for dynamic storage
adjustment.

Only used when SIZE=MAX or
MAINSIZE=MAX is in effect and
the use of additional storage
should improve performance. The
recommended value is 32MB.

MINLIM Lower limit for SIZE or
MAINSIZE.

Only used when SIZE=n or
MAINSIZE=n is less than
MINLIM. The recommended value
is 440KB.

RESALL Storage below 16MB virtual that
is reserved for system use.

Only used when SIZE=MAX or
MAINSIZE=MAX is in effect. Can
reduce the amount of virtual
storage available for use by
DFSORT.

RESINV Storage below 16MB virtual that
is reserved for use by an invoking
program.

Only used when SIZE=MAX or
MAINSIZE=MAX is in effect and
DFSORT is program-invoked.

ARESALL Storage above 16MB virtual that
is reserved for system use.

Can reduce the amount of virtual
storage available for use by
DFSORT.

ARESINV Storage above 16MB virtual that
is reserved for use by an invoking
program.

Only used when DFSORT is
program-invoked.

Installation Considerations

Chapter 4. Installation Considerations 35

|
|
|
|
|

|
|

|
|
|

||
|
|
|
|
|
|

Table 1. ICEMAC Options That Influence DFSORT Performance (continued)

Type ICEMAC Option Description Comments

Options that affect use
of Hipersorting

HIPRMAX Upper limit for Hiperspace for a
single application.

Hiperspaces limited by IEFUSI
installation exit. Recommended
setting is OPTIMAL. Use
EXPMAC, EXPOLD, and
EXPRES to control Hipersorting
on a site-wide basis.

EXPMAX Upper limit for total available
expanded storage used for all
Hipersorting activity.

Available expanded storage is
subject to non-Hipersorting
activity. Should be set to MAX
unless you want to limit
Hipersorting activity to a fixed
portion of expanded storage.

EXPOLD Upper limit for total old expanded
storage used for all Hipersorting
activity.

Old expanded storage is subject
to non-Hipersorting activity.
Should be set to MAX unless a
large migration of old expanded
storage data causes a problem at
your site.

EXPRES Lower limit for available expanded
storage reserved for
non-Hipersorting use.

Available expanded storage is
subject to non-Hipersorting
activity. Should be set to 0 unless
you want DFSORT to have lower
access priority to expanded
storage than other applications.

Options that affect use
of data space

DSPSIZE Upper limit for data space size. Recommended setting is MAX. If
central storage is overcommitted,
set value to a low value and test
it. If resource contention is a
problem only at specific times, set
the value to MAX in your
environment installation modules
and use a time-of-day installation
module to restrict the DSPSIZE
value for all jobs during these
specific times. Data spaces are
limited by IEFUSI.

Installation Considerations

36 DFSORT Tuning Guide R14

|
|
|
|
|
|
|
|
|
|
|
|

Table 1. ICEMAC Options That Influence DFSORT Performance (continued)

Type ICEMAC Option Description Comments

Options that influence
allocation of work data
sets

DYNAUTO Whether work data sets should be
dynamically allocated
automatically.

Can cause an increase in CPU
time for small sort applications but
helps minimize the amount of
DASD space required for sorting.

DYNALOC Default device type and number
of work data sets when dynamic
allocation is requested.

Does not request dynamic
allocation; only supplies defaults.

DYNSPC Default amount of space to
allocate for dynamically allocated
work data sets.

Only used when DFSORT cannot
estimate the input data set size.

IDRCPCT Compaction ratio to use for
IDRC-compacted tape data sets
when computing data set size.

Tells DFSORT how much work
space to dynamically allocate
when input is on an
IDRC-compacted tape.

VIO Whether VIO work data sets
should be automatically
reallocated to real DASD
locations.

ACS routines can override this
option.

Options that affect
VSAM performance

CINV Whether control interval access is
used for VSAM input data sets.

Improves performance for VSAM
input data sets.

VSAMBSP Amount of VSAM buffer space to
use.

To improve VSAM performance,
set VSAMBSP=OPTIMAL or
VSAMBSP=MAX.

Options that affect
input and output data
set performance

IOMAXBF The maximum buffer space to be
used for DASD SORTIN and
SORTOUT data sets.

Default value of 32MB is
recommended. Should only be
lowered when device contention
or long channel connect times are
a problem. Lowering the default
could result in larger EXCP
counts for these data sets, but
could also decrease the channel
connect time per EXCP.

ODMAXBF The maximum buffer space to be
used for each OUTFIL data set.

Default value of 2MB is
recommended. Lowering the
value can cause performance
degradation for the application.
When you use more than 2MB,
the performance improvements
are small except for EXCPs, and,
there is an increased need for
storage.

Installation Considerations

Chapter 4. Installation Considerations 37

|
|
|

Table 1. ICEMAC Options That Influence DFSORT Performance (continued)

Type ICEMAC Option Description Comments

Other options that
affect performance

CFW Whether cache fast write is used
for DFSORT work data sets.

Only applicable for work data sets
located on DASDs attached to
cached 3990 storage control
units. Can be used only if
DFSORT SVC is installed. Cache
fast write can reduce the elapsed
time of sorting applications. CFW
is more beneficial to DFSORT
performance for small and
intermediate sized sorts, where
the work data sets are relatively
small.

EQUALS Whether input order is preserved
for records with equal keys.

Can cause an increase in CPU
time. The default setting of
EQUALS=VLBLKSET should be
changed to EQUALS=NO if
possible.

VERIFY Whether output records are
checked for correct order.

Can cause an increase in CPU
time.

ALTSEQ Whether a collating sequence
other than EBCDIC is used.

Can cause an increase in CPU
time.

SDB and SDBMSG Whether system-determined block
size is used for output data sets
whose block size is zero.

Use of optimum block sizes for
output data sets provides more
efficient performance than using
other block sizes.

IGNCKPT Specifies whether
Checkpoint/Restart requests at
run-time should be ignored.

When CKPT is specified, the
Blockset technique cannot be
selected. Therefore, the
recommended setting is
IGNCKPT=YES so that the
Blockset technique can be used.

CHALT Specifies whether ALTSEQ is to
be applied to character format
fields (CH).

As with ALTSEQ, can cause an
increase in CPU time. The default
setting of CHALT=NO should be
used if possible.

COBEXIT Specifies the library for COBOL
E15 and E35 routines.

There are performance
advantages to using the newer
versions of COBOL rather than
OS/VS COBOL. The value
specified depends on which
version of COBOL you are using.

EFS Specifies the name of a
user-written Extended Function
Support program to be called by
DFSORT.

Can cause an increase in CPU
time and elapsed time. Use only
when necessary for your
application.

LOCALE Specifies whether locale
processing is to be used and, if
so, designates the active locale.

Should only be used when
required since it can show
degraded performance relative to
collation using character encoding
values.

Installation Considerations

38 DFSORT Tuning Guide R14

|
|
|
|
|

|
|
|
|
|
|
|
|

See Installation and Customization for a complete list of site-wide installation
options and the Application Programming Guide for corresponding run-time
overrides.

Installation Exits
DFSORT allows you to use user-written, installation-wide initialization and
termination exit routines to perform a variety of functions, such as overriding the
options currently in effect and collecting statistical data. For tuning purposes it is
often advantageous to install these exits for the following reasons:

v These exits can be used for performance data gathering to help you understand
the use of DFSORT at your site and make the appropriate tuning decisions
based on this information.

v An initialization routine allows you to override the run-time values set for certain
options, which enforces your decisions for those option values for all DFSORT
applications at your site.

ICEIEXIT
A site-supplied ICEIEXIT routine can exercise control over certain DFSORT run-time
options.

If present and activated, the ICEIEXIT routine is called and passed installation and
run-time information by DFSORT. The ICEIEXIT routine can then use current
DFSORT and system information to determine whether to change certain options in
effect. This also permits site-wide control of certain options whose installation
defaults have been overridden at the application-level.

An ICEIEXIT routine can examine installation and run-time information related to:
v Storage limits
v Hiperspace limits
v Data space limits
v Use of VERIFY
v OUTFIL buffer space limits

and additional run-time information related to:
v DFSORT technique used
v Type of DFSORT application
v Method of DFSORT invocation
v Storage above 16MB virtual
v Configured expanded storage

An ICEIEXIT routine can also change certain run-time options including:
v Storage limits
v Hiperspace limits
v Data space limits
v Use of VERIFY
v OUTFIL buffer space limits

A site could use an ICEIEXIT routine to control applications and enforce site
standards. For example:

v Many options (for example, MAXLIM, SIZE, TMAXLIM, DSA) can affect the
virtual storage used by DFSORT. An ICEIEXIT routine could specify the amount
of virtual storage to be used depending on such factors as performance
requirements and jobname.

Installation Considerations

Chapter 4. Installation Considerations 39

|

|
|
|
|

Note: The time-of-day installation modules allow you to specify the virtual
storage to be used depending on the day and time when an application
runs. See “Time-of-Day Installation Modules” on page 33 for more
information.

v Before creating a data space, DFSORT checks to see how much central storage
either is not being used or has gone unreferenced for a sufficient period of time.
This is to make sure enough real storage is available to back the data space
without causing excessive system paging activity. An ICEIEXIT routine can further
reduce the risk of overcommitting central storage by limiting the amount of data
space that a single DFSORT application can use. This would also override any
run-time specifications that try to get around the installation default.

See Installation and Customization for information about coding an ICEIEXIT routine
and a sample ICEIEXIT routine, which shows how the storage available to DFSORT
can be dynamically modified based on the jobname/stepname and type of
application.

ICETEXIT
If present and activated, the ICETEXIT routine is called at the end of DFSORT
application processing. It is available for those who wish to make a thorough
analysis of DFSORT performance data using a single source of information. See
“Using ICETEXIT Data” on page 80 for more information about using this routine;
see Installation and Customization for complete information on how to write and
install an ICETEXIT routine.

Installation Considerations

40 DFSORT Tuning Guide R14

|
|
|
|

|

Chapter 5. Run-Time Considerations

This chapter offers advice about improving the performance of individual DFSORT
applications by using run-time options related to the following areas:

v Sorting with data space

v Hipersorting

v Cache fast write

v File size

v Storage

v Input and output data sets

The last section includes a table with information on run-time options available with
DFSORT that can affect performance.

Sorting with Data Space
Dataspace sorting is a DFSORT capability that uses data space. See “Sorting with
Data Space” on page 10 for a detailed description of dataspace sorting.

The DSPSIZE Parameter
The DSPSIZE parameter specifies the maximum amount of data space to be used
with dataspace sorting. The maximum size of the data space allocated by DFSORT
for a job is determined by the minimum of the following values:

v The limit placed on the size of the data space by the system’s IEFUSI installation
exit. For a description of IEFUSI, refer to Installation Exits.

v The DSPSIZE value (either the installation default value, or an overriding value
specified at run-time).

v The amount of system paging activity at the start of the run. The size of the data
space can be adjusted throughout the run. DFSORT determines the optimal data
space size based on system activity, to help avoid a negative impact on system
paging when using dataspace sorting. If the system paging levels are high,
DFSORT’s data space size limit will be low.

How DFSORT Uses Data Space
The recommended installation setting is the IBM-supplied default of
DSPSIZE=MAX. This enables DFSORT to dynamically determine the amount of
data space to be used for dataspace sorting, taking into account the size of the file
being sorted and the paging activity of the system.

The amount of data space storage used for each sort job is displayed in message
ICE188I. DFSORT dynamically determines how best to use data spaces for each
particular run:

v If the input data set size is known to be small enough so that the sort can be
accomplished in main storage, no data space is created.

v If the size of the input data set in relation to the maximum available data space
amount is too large, no data space is created. Dataspace sorting is only used if
the size of the data space that could be created is large enough to improve the
performance of the sort application.

v If the size of the input data set in relation to the total available main storage is
too large, no data space is created. To ensure that you have enough main

© Copyright IBM Corp. 1992, 1998 41

|
|

storage to use dataspace sorting, follow the recommended virtual storage
guidelines for DFSORT (Table 3 on page 50).

In general, DFSORT takes into account the effect on the application’s performance
and the effect on the system’s performance before using data space. If either effect
is not desirable, DFSORT chooses not to use dataspace sorting.

See “Sorting with Data Space” on page 10 for information on the benefits and
operation of dataspace sorting and “Recommendations for Sorting with Data Space”
on page 30 for additional information on using dataspace sorting effectively.

Hipersorting
Hipersorting is a DFSORT capability that uses Hiperspaces for sorting. For a more
detailed description of this capability, see “Hipersorting” on page 8. The sections
that follow include information on how to use Hipersorting in the most efficient way
at your site.

DFSORT selects the most appropriate mode (Hiperspace-only, Hiperspace-mixed,
or DASD-only) for each particular run. Not every sort application can use
Hipersorting, and even for those sorts that can use Hipersorting, it may be more
advantageous not to use it under certain circumstances. This section examines the
most common reasons for not using Hiperspace and explains the possible actions
that can be undertaken to allow more jobs to take advantage of Hipersorting.

Some customers have expressed concerns that they would like to see Hipersorting
used more often. However, the use of expanded storage must always be weighed
against the possibility of degrading performance for a job or for the entire system,
by overusing expanded storage. If DFSORT were to use Hipersorting
indiscriminately, there could be a significant increase in paging activity and a
resulting reduction in total system performance, affecting all jobs, including sorts.

The recommended setting for HIPRMAX is OPTIMAL. This allows the DFSORT
installation options EXPMAX, EXPOLD, and EXPRES to control the total
Hipersorting activity on a system. Before the availability of dynamic Hipersorting
(that is, prior to Release 13), DFSORT only partially regulated total Hipersorting
activity. Also, HIPRMAX was the only installation option to control Hipersorting
activity. As such, many sites found it useful to set HIPRMAX=n. With dynamic
Hipersorting, DFSORT has full control over total Hipersorting activity, and sites can
customize their definition of HIPRMAX=OPTIMAL with the installation options
EXPMAX, EXPOLD, and EXPRES. HIPRMAX=n and HIPRMAX=p% should now be
reserved for use as a run-time override for applications that have a special reason
to limit the amount of Hiperspace available for Hipersorting.

The number of kilobytes of Hiperspace storage used during the sort is displayed in
message ICE180I. If Hipersorting is not used, the message shows a value of 0K.

Limitations
The maximum amount of Hiperspace used by DFSORT is limited to the minimum of
the following values:

v The IEFUSI exit limit on the total amount of Hiperspace and data space that can
be allocated in a single job step. See MVS/ESA Installation Exits for a description
of IEFUSI.

v The HIPRMAX value in effect, when set to a value other than OPTIMAL. The
HIPRMAX value in effect is either the installation default, an overriding value

Run-Time Considerations

42 DFSORT Tuning Guide R14

|
|
|
|
|
|
|
|
|
|
|

specified at run-time, or an overriding value specified in the installation ICEIEXIT
routine. Note that the value specified in the ICEIEXIT routine overrides any other
value.

v Available expanded storage. Throughout the run, DFSORT determines the
amount of available expanded storage, subtracts from this the amount of
expanded storage needed by other concurrent Hipersorting applications, and
factors in the values specified for installation options EXPMAX, EXPOLD, and
EXPRES. If as a result of any such check, either an expanded storage shortage
is predicted or one of the site limits for total expanded storage usage by all
Hipersorting applications is reached, DFSORT switches from using Hiperspace to
using DASD work data sets for all currently running Hipersorting applications.

In addition, all future DFSORT applications are prevented from using Hipersorting
until the expanded storage situation is relieved. This prevents Hipersorting
applications by themselves from causing a shortage of expanded storage.

Since this last criteria depends very heavily on system activity, especially other
concurrent Hipersorting activity, DFSORT applications can use varying amounts
of Hiperspace when run at different times and under different conditions. In fact,
it is possible for such applications to not use any Hiperspace.

The following are those cases for which you should not attempt to adjust your
application; in these cases the best performance for the individual job and for the
system is achieved by not using Hipersorting:

v Other performance features are in use. Hipersorting is not used when
DFSORT decides to use dataspace sorting. DFSORT dynamically chooses
between using dataspace sorting and using Hipersorting and selects the one that
provides the best performance for the particular sort. Message ICE188I indicates
whether dataspace sorting was used for a particular run.

v The size of the input data set is very small. If the amount of data to be sorted
is known to be small enough that the sort can be accomplished in main memory,
Hipersorting is not used. Since no intermediate data is generated, neither
Hiperspace nor DASD work data sets are needed. The presence of message
ICE080I indicates that a sort was processed in main memory.

Application Adjustments
The following are those cases for which you may want to adjust your application in
order to take advantage of Hipersorting.

v The Blockset technique was not selected. Hipersorting is supported only for
the Blockset technique. If Blockset is not selected, message ICE800I indicates
why it was not selected.

Note that the ICE800I message is printed only when a SORTDIAG DD statement
was coded in the sort’s JCL, or installation option DIAGSIM=YES has been
specified for your site. Use the ICE800I reason code to determine the exact
condition that is preventing the use of Blockset. If you are interested in using
Hipersorting for the job, change your application appropriately to eliminate the
particular condition, so that Blockset can be used.

v Insufficient available virtual storage. In some cases, the amount of virtual
storage available to DFSORT can influence the potential effectiveness of a
Hiperspace. A Hiperspace of a certain size could be too small to improve
performance when an insufficient amount of virtual storage is available, whereas
the same size Hiperspace might be large enough to improve performance when
a sufficient amount of storage is available. Since DFSORT does not use
Hiperspace when doing so would not result in a performance benefit, insufficient
virtual storage can indirectly prevent the use of Hipersorting.

Run-Time Considerations

Chapter 5. Run-Time Considerations 43

Supply DFSORT with sufficient virtual storage if you would like Hipersorting to be
used. The third value in message ICE092I or ICE093I indicates the amount of
storage available for a particular sort job. To help reduce the likelihood of not
using Hipersorting because of insufficient virtual storage, ensure that this value is
at least the maximum recommendation given in Table 2 on page 49. If necessary,
increase the amount of virtual storage available to the job by specifying a larger
MAINSIZE value on the OPTION control statement and/or raising the REGION
value on the sort step EXEC statement.

v Insufficient available expanded storage. The size of the input data set in
relation to the total available expanded storage has an important effect on the
performance of Hipersorting. If the size of the Hiperspace that could be created
is too small to hold a significant percentage of the intermediate data, then the
performance of the run would be degraded compared to using DASD-only mode.
Therefore, DFSORT chooses not to use Hipersorting in this situation.

If you would like Hipersorting to be used, there are several possible approaches
you can take:

– Make sure that the HIPRMAX value or the installation IEFUSI exit is not
limiting the application to a small amount of Hiperspace. Setting
HIPRMAX=OPTIMAL (or to a very large value) and having IEFUSI allow at
least 2 GB of Hiperspace per application will remove this limitation.

– Make sure that the EXPMAX, EXPOLD, and EXPRES values allow significant
amounts of Hipersorting. This is accomplished by setting EXPMAX and
EXPOLD to large values (or MAX) and EXPRES to a small value.

– Rerun the application when system activity, especially other concurrent
Hipersorting activity, is lower so that more expanded storage is available for
the sort. The more expanded storage available, the larger the Hiperspace that
can be created by DFSORT, and the larger the data set size for which
Hipersorting can be allowed.

Remember that some data sets are so large that Hipersorting can never be
used to sort them, even if all the expanded storage installed on a system
were available for the sort. To allow Hipersorting in such cases, you can either
break up the large sort into multiple smaller sorts, or install more expanded
storage on the system.

– Reduce the size of the input data set, so that less expanded storage is
required for the sort. For some applications it is not necessary to sort all of
the data, since only a subset is needed for processing. For example, use of
INCLUDE/OMIT, SKIPREC, or STOPAFT can significantly reduce the amount
of intermediate storage required by DFSORT. See Application Programming
Guide for more details about these features of DFSORT.

– Ensure that DFSORT knows the size of the input data set. In certain
situations, DFSORT cannot accurately determine the amount of data to be
sorted, and thus cannot accurately determine if the use of Hipersorting would
be advantageous for a particular job. To ensure that DFSORT makes the
correct decision about whether or not to use Hipersorting, specify a FILSZ
parameter on the OPTION control statement. This is especially important for
sorts using tape input data sets, E15 user exits, or INCLUDE/OMIT
statements. See Application Programming Guide for more details on when
DFSORT cannot accurately determine the input data set size.

– The parameters that control the system resources manager (SRM) can
indirectly affect the amount of expanded storage that is available for all the
jobs on your system, including sort jobs. For example, PWSS=(0,100) may
cause DFSORT to not use Hipersorting. See Initialization and Tuning for
information about SRM and its parameters.

Run-Time Considerations

44 DFSORT Tuning Guide R14

v Inefficient work data set usage. When a Hiperspace-mixed mode run is
possible, DFSORT must decide how best to use both Hiperspace and DASD
work data sets. In most cases, trade-offs can be made such that both types of
intermediate storage can be used efficiently. In some cases, however, it is
impossible to use both Hiperspace and DASD efficiently, in which case DFSORT
chooses not to use Hipersorting.

In order to avoid such cases, use only 3380 or later model DASD, and supply
sufficient virtual storage to DFSORT, as described in Table 2 on page 49.
Sometimes, it is necessary to rerun the jobs when there is less system activity
(to allow selection of Hiperspace-only mode) in order to take advantage of
Hipersorting.

These are some of the most common reasons why Hipersorting is not used under
particular circumstances. In general, DFSORT takes into account the effect on the
application’s performance and the effect on the system’s performance before using
Hiperspace. If either effect is not desirable, DFSORT chooses not to use
Hipersorting.

See “Hipersorting” on page 8 for information on the benefits and operation of
Hipersorting and “Hipersorting” on page 31 for additional information on using
Hipersorting effectively.

Cache Fast Write
With DFSORT, cache fast write (CFW) refers to the capability of DFSORT to take
advantage of the storage control unit’s cache fast write function when writing to the
work data sets. The recommended setting for cache fast write is CFW=YES. If you
want to change the CFW setting for a specific application, you can use the CFW or
NOCFW options of the DEBUG statement at run-time for that application.

Cache fast write benefits DFSORT performance only if a large percentage of work
data can fit into the cache. Since data in cache is destaged to disk when additional
cache slots are needed, there is no performance advantage in using cache fast
write after the cache has been filled. Every write operation will be delayed by the
speed of the DASD, since destaging is required.

It is most advantageous to use CFW for small and intermediate sized sorts, where
the work data sets will be relatively small. Large sorts, for example, sorts that
require more work space per work data set than is available in the cache, should
not be allowed to use CFW, to avoid flooding the cache. If large sorts are allowed
to use CFW, the performance of other applications that are trying to use the cache
could be adversely affected.

See “Cache Fast Write (CFW)” on page 12 for information on the benefits and
operation of cache fast write and “Cache Fast Write” on page 32 for additional
information on using cache fast write effectively.

File Size
File size is set using the FILSZ option which specifies the exact or estimated
number of records to be sorted. DFSORT uses this record count to determine the
input file size for a sort application. This value is important for sort applications,
since it is used for several internal optimizations as well as for dynamic work data
set allocation.

Run-Time Considerations

Chapter 5. Run-Time Considerations 45

The type of FILSZ value specified controls the way DFSORT performs the above
function, and can have a significant effect on performance and work data set
allocation. Available values include:

v x – specifies the exact number of records to be sorted. This value is always used
for file size calculations. It has an additional feature that if x is not the exact
number of records sorted, DFSORT terminates.

v Ux – specifies an estimated number of records to be sorted. This value is always
used for file size calculations.

v Ex – specifies an estimated number of records to be sorted. DFSORT can
choose to ignore this value in cases where a better estimate is available.

If you enter an incorrect value for the FILSZ parameter, DFSORT’s performance
can be degraded. An incorrect value can also cause wasted DASD space or
termination when work space is dynamically allocated. Therefore, it is important to
update the record count value whenever the number of records to be sorted
changes significantly.

For a variable-length record sort application, if your average record length is
significantly different from one-half of the maximum record length, use the
AVGRLEN option to specify an accurate average record length. This will help you
avoid wasted DASD space or termination when work space is dynamically
allocated.

Storage
DFSORT sorts most efficiently when sufficient virtual storage is available to enable
an optimal balance between placing data in virtual and auxiliary storage. When
virtual storage is limited, DFSORT must expend more resources to transfer data
between virtual and auxiliary storage, which causes increased CPU time, elapsed
time, and I/O usage.

Sufficient real storage must be available to support DFSORT’s virtual storage
requirements. Supplying DFSORT with more virtual storage might not improve
performance if the available system resources cannot accommodate the
corresponding increase in virtual storage activity. If real storage resources become
overcommitted, excessive paging can result. This can cause the performance of
both DFSORT and the system to degrade. It is important, therefore, to balance
virtual storage resources supplied to DFSORT with the overall system resource
requirements.

DFSORT’s Dynamic Storage Adjustment (DSA) feature can let DFSORT tune the
right amount of virtual storage for sort applications relieving system and application
programmers of the task. See “Dynamic Storage Adjustment” on page 11 for more
information on the benefits and operation of DSA.

See “Virtual Storage” on page 20 for a description of virtual storage.

Data Set Size and Virtual Storage
The relationship between data set size and amount of virtual storage available is
critical to the performance of DFSORT. Basically, there are four separate cases to
consider.

v When virtual storage is larger than the data set, DFSORT may be able to
perform the sort entirely within virtual storage, without need to store intermediate

Run-Time Considerations

46 DFSORT Tuning Guide R14

|
|
|
|
|

|
|
|
|

data. This is called an in-main-storage sort. Indeed, this is the preferred method
for sorting small data sets, since it minimizes I/O usage as well as CPU and
elapsed time.

v When virtual storage is smaller than the data set, Hiperspace or work data sets
are needed to store the intermediate data. Provided virtual storage is sufficient
(see Table 2 on page 49 for guidelines), DFSORT is still able to perform an
efficient sort, with elapsed and CPU times close to those of an in-main storage
sort. I/O or Hiperspace usage is increased, however, reflecting the need to write
intermediate data to work data sets or Hiperspace.

v When virtual storage is reduced further or the data set size is increased,
DFSORT is forced to make less efficient use of Hiperspace or work data sets.
DFSORT does what it can to maintain performance but is forced to use
Hiperspace or work data sets less efficiently as the ratio of data set size to
available storage increases. The loss of efficiency adversely affects elapsed time
and EXCP counts.

This performance degradation can be especially dramatic when using work data
sets allocated on devices attached to non-synchronous storage control units or
connected to ESCON channels. In such cases, it is especially important to follow
the virtual storage guidelines explained in “Virtual Storage Guidelines” on
page 49. Avoid using the 3390 Model 9 for work data sets since this device has
slower random access performance than other 3390 devices; it is designed to
store large amounts of input and output data which is accessed sequentially. See
Application Programming Guide for more details about non-synchronous storage
subsystem considerations.

v When virtual storage is very small or the data set size is very large, DFSORT
may require several additional passes over the data to perform the sort. This
phenomenon is known as intermediate merging, and results in significant
performance degradation. Figure 6 on page 48 shows the benefit of increasing
virtual storage to eliminate intermediate merging.

Run-Time Considerations

Chapter 5. Run-Time Considerations 47

All other factors being equal, the range of data set sizes that DFSORT can sort
efficiently (or sort without requiring intermediate merging) grows roughly as the
square of the virtual storage size. That is, doubling the virtual storage in an
application enables the application to handle data sets four times as large with the
same degree of efficiency. Likewise, halving the virtual storage causes the
application to handle data sets only one-fourth as large with the same efficiency.

Virtual Storage Limitations
With the possible exception of in-main storage sorts, providing more storage than
needed to do an efficient sort (see Table 2 on page 49 for storage guidelines) will
probably not result in any significant performance improvement. In fact, elapsed
time (and possibly CPU time) may even increase a little! While this degradation
might not be very noticeable, increasing virtual storage increases the overall effect
DFSORT has on the system by tying up more central storage than necessary. This
can result in fewer jobs being able to run at the same time as well as increased
paging activity on the system.

If user exit routines are used, they will affect DFSORT virtual storage requirements.
The exit routines will occupy virtual storage, and any storage requests they issue
will reduce the amount of storage available to DFSORT. The MODS control
statement should be used to reserve storage for exit routines.

If the storage available to DFSORT below 16MB virtual is severely limited (for
example, to less than 256KB), the use of any of the following can result in storage
failures or terminations:
v Spanned records
v COBOL exit routines
v CHALT, LOCALE, or SMF options

0

20

40

60

80

100

No Intermediate Merging

CPU Time EXCPsElapsed Time

100 100 100

Intermediate Merging,
MAINSIZE=440KPercentage

39

5

57

Figure 6. Benefits of Eliminating Intermediate Merging

Run-Time Considerations

48 DFSORT Tuning Guide R14

v ALTSEQ, INCLUDE, OMIT, SUM, OUTFIL, OUTREC, or INREC control
statements

v Very large blocks or logical records
v VSAM data sets
v An Extended Function Support (EFS) program
v An ICETEXIT routine
v A large ICEIEXIT routine
v A large number of JCL or dynamically allocated work data sets

You can avoid storage problems and achieve better DFSORT performance by
making sure MINLIM is always set to a reasonable value (for example, 440KB) and
by using SIZE/MAINSIZE=MAX with DSA at 32 or more, or SIZE/MAINSIZE=nM
with n set to at least that recommended in Table 2.

Virtual Storage Guidelines
Table 2 gives guidelines for the recommended minimum virtual storage to use for a
sort application based on its data set size. If you do not know the data set size, you
can run the application and look at message ICE134I. The table gives a range of
virtual storage sizes for each possible data set size. The low end of each range
should produce an efficient sort for the given data set size. The high end, in some
cases, will enable an even more efficient sort. Using less than the low end will likely
produce noticeable degradation while using more than the high end will probably
not have a significant impact on performance.

Table 2. Recommended Minimum Storage Guidelines for Sorting Without Data Space

Input Data Set Size
Recommended Minimum
Storage

Less than 50MB 4MB

50MB to 100MB 4-6MB

100MB to 200MB 4-8MB

200MB to 500MB 6-12MB

500MB to 1GB 8-16MB

1GB to 2GB 12-24MB

More than 2GB 16-32MB

In order to guarantee the most efficient sorting, use the higher end of the range
shown. In order to guarantee efficient, but not necessarily best, sorting, use the
lower end. These values are intended for sorting without data space. See Table 3
on page 50 for storage recommendations for sorting with data space.

Although sort applications can usually run with less virtual storage than the
recommended minimum, the recommended amount enables DFSORT to sort most
efficiently. Using less than the recommended amount can result in the effects
described in “Data Set Size and Virtual Storage” on page 46.

Virtual Storage and Sorting with Data Space
Dataspace sorting has a different set of guidelines regarding virtual storage. For
one thing, dataspace sorting creates and uses a data space to hold the records
currently being processed. The size of this data space is chosen to be large enough
to guarantee an efficient sort. Otherwise, dataspace sorting is not used.

Run-Time Considerations

Chapter 5. Run-Time Considerations 49

|

|
|
|
|

|
|
|
|

As a result of the ability of dataspace sorting to adjust its virtual storage
requirements dynamically to the data set being sorted, and the fact that the virtual
storage made available through the data space is in addition to the virtual storage
available to DFSORT normally (through the SIZE or MAINSIZE parameter), the
guidelines in Table 2 on page 49 are not applicable to dataspace sorting. Instead,
use the values found in Table 3 for dataspace sorting applications.

Table 3. Recommended Minimum Storage Guidelines for Sorting with Data Space

Input Data Set Size

Recommended Minimum
Storage for Dataspace
Sorting

Less than 200MB 4MB

200MB to 500MB 4-6MB

500MB to 1GB 4-8MB

1GB to 2GB 4-10MB

More than 2GB 4-12MB

In order to guarantee the most efficient sorting, use the higher end of the range
shown. In order to guarantee efficient, but not necessarily best, sorting, use the
lower end. These values are intended for sorting with data space. See Table 2 on
page 49 for storage recommendations for sorting without data space.

Input and Output Data Sets
The performance of DFSORT can be affected by your choice of block sizes, the
types of devices for input and output data sets, user exits, VIO, and some
enhancements for input and output data sets. The sections that follow describe
these items in more detail.

Block Sizes
Choosing an efficient block size can improve space utilization and I/O performance.

Space Utilization
The amount of space on a track or cylinder occupied by user data depends on the
block size specified for the data set. Grouping logical records into blocks reduces
the amount of space needed to store data. Because fewer physical records are
needed to store the same number of logical records, the amount of space for count
and key areas, and for gaps between records is reduced.

Larger block sizes offer better opportunities for increased DASD space utilization.
An appropriately selected block size can result in higher space utilization than a
smaller block size. An inappropriately selected block size (large or small) can result
in poor space utilization. See 3390 Direct Access Storage Introduction for detailed
information on determining the space utilization for given block sizes on 3390
devices.

Figure 7 on page 51 shows the 3390 space utilization for various block sizes.

Run-Time Considerations

50 DFSORT Tuning Guide R14

I/O Performance
Although small block sizes permit more concurrent channel operations, they reduce
the net data transfer rate (the actual amount of data transferred per second). This
can impact the elapsed time of a DFSORT application performing a significant
amount of I/O. Small block size transfer also requires more CPU involvement and
can, therefore, increase CPU time.

Large block sizes enable a higher net data transfer rate for sequential data sets,
such as for input and output, and reduce the amount of processor time needed to
service a channel program. An example of the benefits of appropriately large input
and output data set block sizes is shown in Figure 8 on page 52.

0

20

40

60

80

100

Space Utilization %

160 320

Block Size (bytes)

19

33

42

55

71

79

480 800

90

98

6400 2784032001600

Figure 7. 3390 Utilization for Various Block Sizes. Assumes data records are stored in equal-length physical records
with no keys.

Run-Time Considerations

Chapter 5. Run-Time Considerations 51

Recommendations
When selecting a block size for input or output, consider these factors:

v Smaller data set sizes generally result in less efficient use of DASD space.

v DFSORT applications that process data sets with small block sizes will generate
higher EXCP counts and probably increase CPU time.

Select as large a block size as possible that is appropriate for the track capacity of
the device you are using, adjusted to accommodate the size of the logical records
in the data set. A block size of approximately 6000 bytes is a reasonably good
choice, offering at least 85 percent utilization with 3390 devices. Even higher
utilization can be obtained by selecting optimum block sizes based on the attributes
of your data sets. See 3390 Direct Access Storage Introduction for detailed
information.

If you use DFSORT’s system-determined block size feature (installation options
SDB=YES and SDBMSG=YES) and do not supply an output block size, DFSORT
chooses an optimal block size for the output data set based on its device type.

Type of Device
For optimal performance, use 3390 devices for input, output, and work data sets to
gain the advantages of higher data transfer rates, larger track capacity, and multiple
path access. Avoid using the 3390 Model 9 for work data sets since this device has
slower random access performance than other 3390 devices; it is designed to store
large amounts of input and output data which is accessed sequentially. In addition,
because 3390 devices can only be attached to 3990 storage control units, DFSORT
might be able to benefit from using the advanced features of the 3990 storage

0

20

40

60

80

100

CPU Time EXCPsElapsed Time

Percentage

BLKSIZE=6400BLKSIZE=160 BLKSIZE=27840

100

27

13

100 100

53

42
40

60 61

BLKSIZE=800

15

77

Figure 8. Benefits of Large Input/Output Data Set Block Sizes

Run-Time Considerations

52 DFSORT Tuning Guide R14

control units. “Chapter 3. Environment Considerations” on page 17 describes how
DFSORT uses 3990 facilities. Other ways of improving DFSORT processing of the
input and output data sets are:

v Use multiple channel paths

v Allocate enough primary space for the output data sets to avoid the need for
additional extents.

v Use separate devices for the input and work data sets, and for the output and
work data sets. (DFSORT application data sets that are accessed concurrently
should reside on separate devices.)

VIO for DFSORT Data Sets
DFSORT temporary data sets allocated to virtual devices (VIO) can provide
significant elapsed time improvements. However, the trade-off for improving elapsed
time using VIO is a serious CPU time degradation.

VIO should be used for DFSORT input, work, and output data sets only when:

v Elapsed time is of primary concern, or

v The temporary data sets are passed to and from other job steps whose
performance can be improved by using VIO.

To realize elapsed time improvements, VIO should be used for:
v Input and work data sets; or
v Work and output data sets; or
v Input, output, and work data sets.

In a DFSMS environment, data sets used by DFSORT might be allocated to virtual
devices by the automatic class selection (ACS) routines, overriding the VIO
installation option in some cases. “System-Managed Storage” on page 21 explains
how the ACS routines can be changed to avoid VIO allocation for DFSORT
temporary data sets.

Input and Output Data Set Enhancements
You can also use certain enhancements for input and output data sets to improve
performance. These enhancements include compression, striping, and SmartBatch
for OS/390. See “Compression” on page 13, “Striping” on page 13, and “SmartBatch
Pipes” on page 14 for a more detailed description of each of these items.

Using compression, striping, and SmartBatch for OS/390 affects performance as
follows:

v The time needed to transfer data is decreased, sometimes dramatically.

v The time needed to perform the DFSORT application is decreased, sometimes
dramatically.

v Work data set I/O is much more likely to be a bottleneck in sort applications that
use these enhancements. To eliminate the need for work data set I/O when using
compression, striping, or SmartBatch for OS/390, do one of the following:
– Use Hipersorting for all sorting, or
– Sort entirely in main storage or data space for small to medium size sorts.

Run-Time Considerations

Chapter 5. Run-Time Considerations 53

|
|
|

|
|

|
|

Run-time Options and Performance
Table 4 shows run-time options that influence the performance of DFSORT, a
description of each option, any restrictions, the IBM-supplied default value and a
possible reason for modifying that value at run-time. All IBM-supplied default values
can be changed to site default values using the ICEMAC macro.

Table 4. Run-time Options That Influence DFSORT Performance

Run-time
Option Description Restriction

IBM-supplied Default Value
and Reason for Modifying

SIZE and
MAINSIZE

Upper limit for total storage
above and below 16MB virtual.

Limited by TMAXLIM or
MAXLIM when SIZE=MAX or
MAINSIZE=MAX is in effect.

The default is MAX. Modify
when sorting unusually large
data sets.

RESALL Storage below 16MB virtual that
is reserved for system use.

Only used when SIZE=MAX or
MAINSIZE=MAX is in effect.
Can reduce the amount of
virtual storage available for use
by DFSORT.

The default is 4KB. Modify when
sufficient REGION is specified
but application terminates for
lack of below 16MB virtual
storage.

RESINV Storage below 16MB virtual that
is reserved for use by an
invoking program.

Only used when SIZE=MAX or
MAINSIZE=MAX is in effect and
DFSORT is program-invoked.

The default is 0.

ARESALL Storage above 16MB virtual that
is reserved for system use.

Can reduce the amount of
virtual storage available for use
by DFSORT.

The default is 0.

ARESINV Storage above 16MB virtual that
is reserved for use by an
invoking program.

Only used when DFSORT is
program-invoked.

The default is 0.

HIPRMAX Upper limit for Hiperspace for a
single application.

Hiperspaces limited by IEFUSI
installation exit.

The default is OPTIMAL. Set to
0 to disable Hipersorting.

DSPSIZE Upper limit for data space size. Data spaces limited by IEFUSI. The default is MAX. Set to 0 to
disable dataspace sorting.

DYNALLOC Requests dynamic allocation
and specifies device type and
number of work data sets.

The default is (SYSDA, 4).

CINV and
NOCINV

Whether control interval access
is used for VSAM input data
sets.

Improves performance for VSAM
input data sets.

The default is CINV.

CFW and
NOCFW

Whether cache fast write is used
for DFSORT work data sets.

Only applicable for work data
sets located on DASDs attached
to cached 3990 storage control
units. Can be used only if
DFSORT SVC is installed.
Cache fast write can reduce the
elapsed time of sorting
applications. CFW is more
beneficial to DFSORT
performance for small and
intermediate sized sorts.

The default is YES. Use
NOCFW for large sorts.

EQUALS and
NOEQUALS

Whether input order is
preserved for records with equal
keys.

Can cause an increase in CPU
time.

The default is VLBLKSET. Use
NOEQUALS whenever possible.

VERIFY and
NOVERIFY

Whether output records are
checked for correct order.

Can cause an increase in CPU
time.

The default is NOVERIFY. Use
VERIFY only when necessary.

Run-Time Considerations

54 DFSORT Tuning Guide R14

|
|
|

|
|
|

Table 4. Run-time Options That Influence DFSORT Performance (continued)

Run-time
Option Description Restriction

IBM-supplied Default Value
and Reason for Modifying

ALTSEQ Whether a collating sequence
other than EBCDIC is used.

Can cause an increase in CPU
time.

There is no default value. Use
ALTSEQ only when necessary.

AVGRLEN Specifies the average input
record length in bytes for
variable-length sort applications.

This value is used when
necessary to determine the input
file size. The resulting value is
important for sort applications,
since it is used for several
internal optimizations as well as
for dynamic work data set
allocation (see OPTION
DYNALLOC).

There is no default value. Using
a value close to the actual
average record length may
improve variable-length record
sort performance.

FILSZ Specifies either the exact
number of records to be sorte or
an estimate of the number of
records to be sorted.

The type of value specified can
have a significant effect on
performance and work data set
allocation. See “File Size” on
page 45 for more detailed
information on this option.

There is no default value. Using
a value close to the actual file
size may improve sort
performance.

ODMAXBF The maximum buffer space to
be used for each OUTFIL data
set.

Lowering the value can cause
performance degradation for the
application. When you use more
than 2MB, the performance
improvements are small except
for EXCPs, and, there is an
increased need for storage.

The default is 2MB. When you
are running OUTFIL applications
with a large number of output
data sets and constrained
storage, use a smaller value to
reduce total virtual storage
usage.

NOBLKSET Controls the use of Blockset
techniques.

If necessary, DFSORT can still
use non-Blockset techniques for
other reasons. Using
non-Blockset techniques
significantly degrades
performance.

There is no default value.
Specify NOBLKSET only
temporarily to bypass a Blockset
problem.

CHALT and
NOCHALT

Specifies whether ALTSEQ is to
be applied to character format
fields (CH).

As with ALTSEQ, can cause an
increase in CPU time.

The default is NOCHALT. Use
CHALT only when necessary.

COBEXIT Specifies the library for COBOL
E15 and E35 routines.

There are performance
advantages to using the newer
versions of COBOL rather than
OS/VS COBOL.

The default is COBEXIT=COB1.
Use the value that corresponds
to the version of COBOL you
are using.

EFS Specifies the name of a
user-written Extended Function
Support program to be called by
DFSORT.

Can cause an increase in CPU
time and elapsed time.

The default is EFS=NONE. Use
EFS only when necessary for
your application.

LOCALE Specifies whether locale
processing is to be used and, if
so, designates the active locale.

Should only be used when
required since it can show
degraded performance relative
to collation using character
encoding values.

The default is LOCALE=NONE.
Use LOCALE only when
necessary for your application.

See Application Programming Guide for a complete list of run-time override options.

Run-Time Considerations

Chapter 5. Run-Time Considerations 55

56 DFSORT Tuning Guide R14

Chapter 6. Application Considerations

Most sites have many applications involving sorting. DFSORT is often used by
these applications either directly by invoking DFSORT with JCL, or indirectly by
invoking DFSORT from a program. In particular, the COBOL SORT statement, and
the PL/I sort routines result in calls to DFSORT (see the appropriate language
books for complete details).

The way in which COBOL interfaces with DFSORT depends on the use of COBOL
features such as FASTSRT, NOFASTSRT, USING, GIVING and INPUT and
OUTPUT PROCEDUREs, and DFSORT features such as COBOL exits and
DFSORT control statements. In general, the featuers you use are dictated by the
needs of your application. But in many cases, an application can achieve its results
using one or another of these features, that is, you have a choice. This chapter
describes some of the COBOL and DFSORT features you can choose and the
performance and productivity implications of doing so.

See COBOL Application Programming Guide or Application Programming Guide for
details if you are not familiar with any of the COBOL or DFSORT features described
in this chapter. See Getting Started for excellent tutorials on DFSORT control
statements.

Notes:

1. Although this chapter uses VS COBOL II for purposes of illustration and
performance comparisons, it applies equally to newer versions of COBOL, that
is, COBOL for MVS & VM and COBOL for OS/390 & VM.

2. Many of the techniques described in this chapter can also be used with other
languages that can call DFSORT such as PL/I and Assembler.

VS COBOL II Interfaces to DFSORT

Programming Interface information

Understanding the interfaces between DFSORT and languages such as VS COBOL
II can help you design more efficient applications. Knowing which interfaces are
used enables you to:

v Obtain more information about these interfaces in the DFSORT books.

v Determine the best way to take advantage of these interfaces.

Invoking DFSORT from COBOL
In order to invoke DFSORT from COBOL, you must code a COBOL SORT
statement. This statement has the following variations which affect the way in which
DFSORT and COBOL pass information back and forth:

v USING

v GIVING

v INPUT PROCEDURE

v OUTPUT PROCEDURE

In addition, the VS COBOL II compile-time options FASTSRT and NOFASTSRT
also affect the interfaces between COBOL and DFSORT.

© Copyright IBM Corp. 1992, 1998 57

|
|
|
|
|
|
|
|

|
|
|

|
|

The interfaces that result from the COBOL SORT statement and the
FASTSRT/NOFASTSRT compile-time options are described in “Processing with
FASTSRT” and “Processing with NOFASTSRT”.

When a COBOL calling program is used, DFSORT control statements can be
specified using the COBOL data set defined by IGZSRTCD or the DFSORT data
set defined by SORTCNTL or DFSPARM. There are some differences in how these
data sets can be used. For example:

v SORTCNTL allows you to specify comment statements, blank statements,
remarks, and labels. DFSPARM allows comment statements, blank statements,
and remarks, but not labels. IGZSRTCD does not allow comment statements,
remarks, or labels, and eliminates blank statements.

v DFSPARM and IGZSRTCD enable you to pass certain DFSORT run-time options
(such as MSGDDN) that are ignored in SORTCNTL.

v Using the COBOL special register SORT-CONTROL enables you to pass
different IGZSRTCD data sets to DFSORT when you have multiple SORT
statements. The statements in IGZSRTCD are actually placed in the parameter
list in storage that COBOL passes when it calls DFSORT. A separate parameter
list with the appropriate control statements is passed for each call.

v SORTCNTL and DFSPARM enable you to pass DFSORT control statements
without increasing the storage used for the parameter list.

For our examples, we use SORTCNTL, although IGZSRTCD or DFSPARM would
do just as well.

Processing with FASTSRT
VS COBOL II’s FASTSRT compile-time option is a special feature of the language
that can improve performance for qualifying applications which use the COBOL
SORT statement. You should always specify the FASTSRT option. VS COBOL II
decides automatically at compile-time whether FASTSRT can actually be used. For
example, FASTSRT cannot be used for input processing when an INPUT
PROCEDURE is specified. See COBOL Application Programming Guide for the
complete list of FASTSRT requirements and restrictions.

When FASTSRT is in effect for input processing, VS COBOL II passes the ddname
of the input data set to DFSORT. DFSORT uses this ddname to read the input data
set directly.

When FASTSRT is in effect for output processing, VS COBOL II passes the
ddname of the output data set to DFSORT. DFSORT uses this ddname to write the
output data set directly.

Input or output processing by DFSORT rather than COBOL can result in reductions
in CPU time, EXCPs, and elapsed time.

Notes:

1. OS/VS COBOL has no equivalent to FASTSRT.

2. PL/I’s PLISRTA subroutine is equivalent to using FASTSRT for both input and
output processing. PLISRTB is equivalent to using FASTSRT for output
processing and PLISRTC is equivalent to using FASTSRT for input processing.

Processing with NOFASTSRT
When NOFASTSRT is in effect for input processing, the USING or INPUT
PROCEDURE causes COBOL to generate a DFSORT E15 user exit routine and

Application Considerations

58 DFSORT Tuning Guide R14

pass its address to DFSORT. When an INPUT PROCEDURE is used, COBOL
incorporates the INPUT PROCEDURE code into the E15 routine it generates.

DFSORT does not read the input data set directly, but instead obtains all the input
records from the E15 routine. The E15 routine generated by COBOL reads the input
data set and passes one record to DFSORT each time it is called.

When NOFASTSRT is in effect for output processing, the GIVING or OUTPUT
PROCEDURE causes COBOL to generate a DFSORT E35 user exit routine and
pass its address to DFSORT. When an OUTPUT PROCEDURE is used, COBOL
incorporates the OUTPUT PROCEDURE code into the E35 routine it generates.

DFSORT does not write the output data set directly, but instead passes all the
output records to the E35 routine. DFSORT calls the E35 routine generated by
COBOL once for each record so the E35 routine can write the record to the output
data set.

Input or output processing by COBOL rather than DFSORT can result in degraded
performance.

Notes:

1. OS/VS COBOL’s input and output processing is equivalent to using
NOFASTSRT.

2. PL/I’s PLISRTD subroutine is equivalent to using NOFASTSRT for both input
and output processing. PLISRTC is equivalent to using NOFASTSRT for output
processing and PLISRTB is equivalent to using NOFASTSRT for input
processing.

Performance
When FASTSRT is in effect for a COBOL sort, DFSORT reads the input data set
and writes the output data set rather than COBOL. This results in reductions in
elapsed time, CPU time and EXCPs. An example of the benefits of FASTSRT is
shown in Figure 9 on page 60. For this comparison, the same COBOL sort with
USING and GIVING was run with FASTSRT and NOFASTSRT.

Application Considerations

Chapter 6. Application Considerations 59

|
|
|
|
|

End of Programming Interface information

Sample Sorting Application
The remainder of this chapter describes and compares three different methods for
doing the following application:

1. Pre-processing: Delete all input records which have zero in a particular field
(call it the OMIT field). The OMIT field is columns 30-34 of the records.

2. Sorting: Sort the remaining records in descending order by a particular
character format field (call it the KEY field). The KEY field is in columns 5-24 of
the records.

3. Post-processing: Write one output record with each key.

The three methods are as follows:

v Method 1: COBOL program with INPUT/OUTPUT PROCEDUREs

v Method 2: COBOL program with DFSORT control statements

v Method 3: DFSORT with control statements

Method 1: COBOL Program with INPUT/OUTPUT PROCEDUREs

Programming Interface information

Method 1 uses a SORT statement INPUT PROCEDURE for pre-processing and a
SORT statement OUTPUT PROCEDURE for post-processing.

0

20

40

60

80

100

Percentage
NOFASTSRT FASTSRT

CPU Time EXCPsElapsed Time

100 100 100

80

24

3

Figure 9. Benefits of FASTSRT

Application Considerations

60 DFSORT Tuning Guide R14

|
|

|
|

|
|

|
|
|

|

|

|

|

|

|

|
|

NOFASTSRT is in effect for input and output processing due to the use of INPUT
and OUTPUT PROCEDUREs.

An INPUT PROCEDURE or OUTPUT PROCEDURE can add, delete, alter, edit, or
otherwise modify the records.

The INPUT PROCEDURE and OUTPUT PROCEDURE are actually special forms
of E15 and E35 exits which are called by DFSORT during its processing, but
controlled by the COBOL calling program.

The INPUT PROCEDURE is responsible for supplying all of the input records to be
sorted to DFSORT, while the OUTPUT PROCEDURE is responsible for disposing of
all the records after they are sorted.

COBOL Calling Program

*---
* METHOD 1: COBOL INPUT AND OUTPUT PROCEDURES.
*---
* 1. PRE-PROCESS:
* THE PROGRAM USES A SORT INPUT PROCEDURE TO DELETE RECORDS
* WITH A ZZZZZ OMIT FIELD BEFORE SORTING. THE OMIT FIELD IS
* IN COLUMNS 30-34.
* 2. SORT
* THE PROGRAM CALLS DFSORT TO SORT THE RECORDS IN DESCENDING
* ORDER. THE KEY IS IN COLUMNS 5-24.
* 3. POST-PROCESS:
* THE PROGRAM USES A SORT OUTPUT PROCEDURE TO WRITE ONE
* RECORD WITH EACH KEY AFTER SORTING.
*
* INPUT/OUTPUT: READS INDS AND WRITES OUTDS.
* DFSORT PASSES RECORDS TO THE PROCEDURES.
*---
ID DIVISION.

PROGRAM-ID. CASE1.
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INDS ASSIGN TO INDS.
SELECT OUTDS ASSIGN TO OUTDS.
SELECT SORT-FILE ASSIGN TO SORTFILE.

Figure 10. COBOL Calling Program for Method 1 (Part 1 of 3)

Application Considerations

Chapter 6. Application Considerations 61

DATA DIVISION.
FILE SECTION.
FD INDS RECORD CONTAINS 160 CHARACTERS

LABEL RECORD STANDARD BLOCK 27840
DATA RECORDS ARE INDS-RECORD.

01 INDS-RECORD.
05 FILLER PIC X(4).
05 INDS-KEY PIC X(20).
05 FILLER PIC X(5).
05 INDS-OMIT PIC X(5).
05 FILLER PIC X(126).
FD OUTDS RECORD CONTAINS 160 CHARACTERS

LABEL RECORD STANDARD BLOCK 27840
DATA RECORDS ARE OUTDS-RECORD.

01 OUTDS-RECORD.
05 FILLER PIC X(160).
SD SORT-FILE RECORD CONTAINS 160 CHARACTERS

DATA RECORD SORT-RECORD.
01 SORT-RECORD.
05 FILLER PIC X(4).
05 SORT-KEY PIC X(20).
05 FILLER PIC X(136).
WORKING-STORAGE SECTION.
01 FLAGS.
05 INDS-EOF PIC X VALUE SPACE.

88 SFLAG VALUE "Y".
05 TEMP-EOF PIC X VALUE SPACE.

88 TFLAG VALUE "Y".
01 PSTART PIC 9(1) VALUE 0.
01 SAVE-KEY PIC X(20).
01 TEMP-RECORD.
05 FILLER PIC X(4).
05 TEMP-KEY PIC X(20).
05 FILLER PIC X(136).
PROCEDURE DIVISION.
MASTER SECTION.

*---
* CALL DFSORT TO SORT THE RECORDS IN DESCENDING ORDER.
*---

SORT SORT-FILE
ON DESCENDING KEY SORT-KEY
INPUT PROCEDURE INPUT-PROC
OUTPUT PROCEDURE OUTPUT-PROC.
IF SORT-RETURN > 0

DISPLAY "SORT FAILED".
STOP RUN.

Figure 10. COBOL Calling Program for Method 1 (Part 2 of 3)

Application Considerations

62 DFSORT Tuning Guide R14

Operation (NOFASTSRT in Effect)
The SORT statement results in a call to DFSORT with a parameter list that contains
a SORT control statement and other information.

DFSORT treats the INPUT PROCEDURE as an E15 user exit which must supply all
the input records. DFSORT calls the INPUT PROCEDURE once for each input
record. The INPUT PROCEDURE reads the input data set and uses RELEASE to
pass each record with a non-zero OMIT field to DFSORT.

DFSORT sorts the records passed to it by the INPUT PROCEDURE as requested
by the SORT statement passed to it by the calling program.

*---
* SORT INPUT PROCEDURE:
* READ INDS.
* DELETE ALL RECORDS WITH A 'ZZZZZ' OMIT FIELD.
* SEND ALL OTHER RECORDS TO DFSORT FOR SORTING.
*---

INPUT-PROC SECTION.
OPEN INPUT INDS
READ INDS AT END SET SFLAG TO TRUE
END-READ
PERFORM UNTIL SFLAG

IF INDS-OMIT NOT = "ZZZZZ"
RELEASE SORT-RECORD FROM INDS-RECORD

END-IF
READ INDS AT END SET SFLAG TO TRUE
END-READ

END-PERFORM.
CLOSE INDS.

*---
* SORT OUTPUT PROCEDURE:
* RECEIVE RECORDS FROM DFSORT INTO TEMP.
* WRITE ONE RECORD WITH EACH KEY TO OUTDS.
*---

OUTPUT-PROC SECTION.
OPEN OUTPUT OUTDS
RETURN SORT-FILE INTO TEMP-RECORD AT END SET TFLAG TO TRUE
END-RETURN
PERFORM UNTIL TFLAG

IF PSTART = 0
*---
* FIRST RECORD - SAVE KEY AND WRITE RECORD TO OUTDS.
*---

MOVE TEMP-KEY TO SAVE-KEY
WRITE OUTDS-RECORD FROM TEMP-RECORD
MOVE 1 TO PSTART

ELSE
IF TEMP-KEY NOT = SAVE-KEY

*---
* RECORD HAS NEW KEY - SAVE KEY AND WRITE RECORD TO OUTDS.
*---

MOVE TEMP-KEY TO SAVE-KEY
WRITE OUTDS-RECORD FROM TEMP-RECORD

END-IF
END-IF
RETURN SORT-FILE INTO TEMP-RECORD

AT END SET TFLAG TO TRUE
END-RETURN

END-PERFORM.
CLOSE OUTDS.

Figure 10. COBOL Calling Program for Method 1 (Part 3 of 3)

Application Considerations

Chapter 6. Application Considerations 63

DFSORT treats the OUTPUT PROCEDURE as an E35 user exit which must
dispose of all the output records. DFSORT calls the OUTPUT PROCEDURE once
for each sorted record. The OUTPUT PROCEDURE uses RETURN to obtain the
records passed from DFSORT and writes one record with each key to the output
data set.

Performance
Since the COBOL program’s INPUT and OUTPUT PROCEDUREs must, by
definition, read and write the data sets, NOFASTSRT is in effect for Method 1.
FASTSRT is in effect for the other methods we will describe, providing significant
performance improvements.

End of Programming Interface information

Method 2: COBOL Program with DFSORT Control Statements

Programming Interface information

Method 2 eliminates the COBOL pre-processing and post-processing code by using
DFSORT control statements to provide the equivalent functions. An OMIT statement
is used instead of an E15, and a SUM statement is used instead of an E35.

FASTSRT is used for input and output processing.

DFSORT provides a powerful set of collating and editing functions available though
the use of control statements and options. Collating and editing functions can be
used to replace program code. They are designed to adapt to the run-time
characteristics of an application in order to provide significant performance benefits.

DFSORT’s most significant collating and editing functions are:

v SORT or MERGE: enable you to override the SORT or MERGE control
statement generated by the compiler. The override statement can contain the
DFSORT year 2000 field format (Y2x).

v INCLUDE or OMIT: enable you to include or delete records whose fields meet
certain criteria.

v INREC and OUTREC: enable you to delete and rearrange fields in your records,
and to insert blanks, zeros, and constants in records.

v SUM: enables you to sum fields in records with equal keys and to keep only one
record with each key.

v OUTFIL: enables you to perform a wide variety of tasks (for example, subsets,
editing, reports, and conversion) for multiple output data sets.

v SKIPREC and STOPAFT: enable you to delete records at the beginning or end of
your data set.

When a COBOL calling program is used, INCLUDE, OMIT, INREC, OUTREC, SUM,
and OUTFIL can be specified in the data set defined by IGZSRTCD, SORTCNTL,
or DFSPARM. SKIPREC and STOPAFT can be specified on an OPTION statement
in the data set defined by IGZSRTCD, SORTCNTL, or DFSPARM.

The figures that follow show the COBOL calling program and DFSORT control
statements for Method 2.

Application Considerations

64 DFSORT Tuning Guide R14

|
|
|
|

|

|
|
|

Operation (FASTSRT in Effect)
The SORT statement results in a call to DFSORT with a parameter list that contains
a SORT control statement and other information.

DFSORT reads the input data set and deletes each record with a zero OMIT field
as requested by the OMIT statement.

DFSORT sorts the remaining records as requested by the SORT statement passed
from the calling program.

DFSORT writes one record with each key to the output data set as requested by
the SUM statement.

Productivity
The use of DFSORT editing functions rather than COBOL code reduces
considerably the effort required to perform the application. Source code for
pre-processing and post-processing is eliminated along with the time to compile and
debug the code.

In addition, future changes to the editing functions performed by the application can
be made by simply changing the control statements. Access to source code or
recompiles are not necessary.

Control Statements

COBOL Calling Program

//SORTCNTL DD *
OMIT COND=(30,5,CH,EQ,C'ZZZZZ')
SUM FIELDS=NONE

Figure 11. DFSORT Control Statements for Method 2

Application Considerations

Chapter 6. Application Considerations 65

*---
* METHOD 2: COBOL MAIN PROGRAM.
*---
* 1. PRE-PROCESS:
* A DFSORT OMIT CONTROL STATEMENT DELETES RECORDS WITH A
* 'ZZZZZ' OMIT FIELD BEFORE SORTING. THE OMIT FIELD IS IN
* IN COLUMNS 30-34.
* 2. SORT
* THE PROGRAM CALLS DFSORT TO SORT THE RECORDS IN DESCENDING
* ORDER. THE KEY IS IN COLUMNS 5-24.
* 3. POST-PROCESS:
* A DFSORT SUM CONTROL STATEMENT WRITES ONE RECORD WITH
* EACH KEY AFTER SORTING.
*
* INPUT/OUTPUT: DFSORT READS SORTIN AND WRITES SORTOUT.
*---
ID DIVISION.
PROGRAM-ID. CASE2.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT SORTIN ASSIGN TO SORTIN.
SELECT SORTOUT ASSIGN TO SORTOUT.
SELECT SORT-FILE ASSIGN TO SORTFILE.

DATA DIVISION.
FILE SECTION.
FD SORTIN RECORD CONTAINS 160 CHARACTERS

LABEL RECORD STANDARD BLOCK 27840
DATA RECORDS ARE SORTIN-RECORD.

01 SORTIN-RECORD.
05 FILLER PIC X(160).

FD SORTOUT RECORD CONTAINS 160 CHARACTERS
LABEL RECORD STANDARD BLOCK 27840
DATA RECORDS ARE SORTOUT-RECORD.

01 SORTOUT-RECORD.
05 FILLER PIC X(160).

SD SORT-FILE RECORD CONTAINS 160 CHARACTERS
DATA RECORD SORT-RECORD.

01 SORT-RECORD.
05 FILLER PIC X(4).
05 SORT-KEY PIC X(20).
05 FILLER PIC X(136).

WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

MASTER SECTION.

Figure 12. COBOL Calling Program for Method 2 (Part 1 of 2)

*---
* CALL DFSORT TO SORT THE RECORDS IN DESCENDING ORDER.
*---

SORT SORT-FILE
ON DESCENDING KEY SORT-KEY
USING SORTIN
GIVING SORTOUT.

IF SORT-RETURN > 0
DISPLAY "SORT FAILED".

STOP RUN.

Figure 12. COBOL Calling Program for Method 2 (Part 2 of 2)

Application Considerations

66 DFSORT Tuning Guide R14

Performance
Since Method 2 uses USING and GIVING rather than INPUT and OUTPUT
PROCEDUREs, FASTSRT is in effect. In addition, by eliminating the overhead
related to passing each record between DFSORT and the user exits, and enabling
DFSORT to use its highly optimized editing code, Method 2 achieves significant
performance gains in CPU time, elapsed time, and EXCPs compared to Method 1.
Figure 13 shows a performance comparison between Method 1 and Method 2.

End of Programming Interface information

Method 3: DFSORT with Control Statements
Method 3 takes the final step of eliminating the COBOL calling program by invoking
DFSORT directly (using PGM=ICEMAN or PGM=SORT on the JCL EXEC
statement). Calling DFSORT directly is only feasible if all of the functions of the
COBOL program can be duplicated using DFSORT control statements, options, or
user exits.

The SORT statement of the COBOL program is replaced by an equivalent DFSORT
control statement, SORT.

When DFSORT is invoked directly, control statements can be specified using the
data set defined by SYSIN or DFSPARM. DFSPARM can be used to specify certain
options (for example, MSGDDN) that are ignored in SYSIN. For this example, we
use SYSIN, although DFSPARM would do just as well.

0

20

40

60

80

100

Percentage

Method 1 Method 2

CPU Time EXCPsElapsed Time

100 100 100

60

8

78

Figure 13. Method 1 vs Method 2 Performance Comparison

Application Considerations

Chapter 6. Application Considerations 67

|
|

Control Statements

Operation
The system calls DFSORT directly.

DFSORT reads the input data set and deletes each record with a zero OMIT field
as requested by the OMIT statement.

DFSORT sorts the remaining records as requested by the SORT control statement.

DFSORT writes one record with each key to the output data set as requested by
the SUM statement.

Productivity
Elimination of all COBOL code reduces significantly the effort required to perform an
application. You can use control statements to duplicate complex code logic quickly
and effectively. Source code for pre-processing, sorting, and post-processing is
eliminated along with the time to compile and debug the code.

In addition, future changes to the editing and sorting functions performed by the
application can be made by simply changing the control statements. Access to
source code, and recompiles, are not necessary.

Performance
Performance for Method 3 is comparable to that for Method 2.

//SYSIN DD *
OMIT COND=(30,5,CH,EQ,C'ZZZZZ')
SORT FIELDS=(5,20,CH,D)
SUM FIELDS=NONE

Figure 14. DFSORT Control Statements for Method 4

Application Considerations

68 DFSORT Tuning Guide R14

|

Chapter 7. DFSORT Performance Data

Tuning activity is often started when a particular job is taking too long to complete
or is using system resources excessively. But if such a “problem job” does not exist
at your site, where do you start to look for ways to improve DFSORT’s performance
or balance its use of resources with other requirements?

The purpose of this chapter is to outline the actions available for those who want to
tune the use of DFSORT at their site. It also shows what information you need
about DFSORT, where to find it, and what methods are available for collecting the
data, including use of the DFSORT installation exits ICEIEXIT and ICETEXIT. The
specific topics include:

v Where to find performance indicators

v An overview of DFSORT performance information

v Sources of DFSORT performance information

v Techniques for analyzing DFSORT performance data

v Balancing DFSORT requirements with system resources

v Understanding trade-offs in improving performance

DFSORT Performance Indicators
Performance indicators can be found in a number of different places. Where you
choose to find them depends on your own knowledge of OS/390 or MVS/ESA,
available tools, and how much effort you want to spend.

Sources you can use include:

JES Log
For batch jobs, JES writes a job log including messages issued and system
accounting information. Figure 15 on page 70 shows a sample JES2 log for
a DFSORT job. The JES2 log produced at your site will, of course, be
different.

© Copyright IBM Corp. 1992, 1998 69

|
|
|
|
|

Messages
Some programs (like DFSORT) issue messages quantifying their use of
certain system resources. This is the simplest way of accessing such
information. In the case of DFSORT, when a SORTDIAG DD statement is
present or the ICEMAC option DIAGSIM=YES has been specified for your
site, additional messages useful for tuning are issued. An example of the

Figure 15. A Sample JES2 Log

Performance Data

70 DFSORT Tuning Guide R14

|

DFSORT messages is shown in Figure 16. See Messages, Codes, and
Diagnosis Guide for explanations of these messages.

ICEIEXIT
The installation initialization exit (ICEIEXIT) allows you to examine certain
installation and run-time information for each DFSORT application. The
ICEIEXIT routine could be used to collect the information relevant to
performance, and to write this information to a data set which can be
analyzed. Refer to “Using ICEIEXIT Data” on page 79 for information on
using ICEIEXIT data to do a moderate analysis of your DFSORT
applications. Refer to “Installation Exits” on page 39 for a brief overview of
ICEIEXIT.

SMF System management facilities (SMF) collects a variety of system and
application-related information into a number of different SMF records
written by the system and various programs.

SMF type-30 (subtype 4) records, for instance, are written for each job step,
and summarize the step’s consumption of major system resources, such as
CPU time (broken down into these fields: TCB, SRB, RCT, HPT, and IIP),
elapsed time, EXCP counts, and device connect times. In addition,
DFSORT can write an SMF type-16 record, which summarizes the key

Figure 16. DFSORT Messages. SORTDIAG DD was present.

Performance Data

Chapter 7. DFSORT Performance Data 71

statistics from a particular DFSORT run. By running reports against SMF
data, sites can use this information for workload analysis, planning, and
accounting purposes.

To extract performance information from SMF data, you can run an SMF
report, use a data reduction program (refer to “Service Level Reporter” on
page 75 for a description of one such program), use the analysis and
reporting features of DFSORT or its ICETOOL utility, or write a program of
your own. Since SMF data often contains accounting and other sensitive
data, access might be limited.

ICETEXIT
The installation termination exit (ICETEXIT) allows you to collect extensive
performance-related information about all DFSORT applications at a site.
ICETEXIT provides comprehensive data for each DFSORT application
including the information contained in DFSORT’s type-16 SMF record. Refer
to “Using ICETEXIT Data” on page 80 for information on using ICETEXIT
data to do a moderate analysis of your DFSORT applications. Refer to
“Installation Exits” on page 39 for a brief overview of ICETEXIT.

RMF Resource Measurement Facility (RMF) measures system, address space,
and workload activity. You can use RMF to generate reports online or
off-line, or as a real-time monitor. Most of these reports concern
performance-related statistics for processor, storage, I/O devices, and
system data sets.

RMF’s primary use is for system-level tuning, but it can also detail the
performance characteristics of subsystems and workloads. Many system
programmers rely heavily on RMF reports for these analysis activities. RMF
writes a series of records into the SMF system data sets which can later be
processed by RMF, SLR, or other SMF analysis programs.

As for DFSORT performance, RMF can be used to understand DFSORT’s
use of resources, to discern the effects of running DFSORT applications,
and to highlight contention for resources. For example, it can help you
identify situations where multiple work data sets are being placed on the
same DASD, by showing a high device utilization for that particular DASD.
As with SMF, access to RMF and its data might be restricted.

For a detailed cross reference of sources of performance indicators, refer to Table 5
on page 73.

Overview of DFSORT Performance Information
Table 5 on page 73 lists the main DFSORT performance areas, sources of
information about each area, and suggested analysis activities for each area.

Each level of analysis discussed in “Analysis Techniques for DFSORT Performance
Data” on page 77 produces a set of data to interpret. This figure is intended to help
you associate that data with certain performance areas in DFSORT. For example, if
you have decided to do a simple analysis and are concerned with your use of
Blockset, you would check DFSORT messages ICE143I and ICE800I to determine
whether or not the Blockset technique is being used, and if it is not, why it is not.

You can also use this figure to help you determine which level of analysis you want
to do, given the performance areas you are interested in. For example, if you were

Performance Data

72 DFSORT Tuning Guide R14

concerned about intermediate merging, you would be able to tell from this figure
that you would need to do moderate analysis to obtain data about this performance
area.

Table 5 uses the following abbreviations:
ICExxxx

DFSORT messages (The ICE8xxI messages only appear if you have coded
the SORTDIAG DD statement or if the ICEMAC option DIAGSIM=YES has
been specified for your site.). See Messages, Codes, and Diagnosis Guide
for explanations of the DFSORT messages.

JLOG Job/JES log.
SMF16

SMF type-16 record (issued by DFSORT).
SMF30

SMF type-30 (subtype 4) record.
IEXIT Information passed to the DFSORT ICEIEXIT routine.
TEXIT Information passed to the DFSORT ICETEXIT routine (includes contents of

the SMF type-16 record).

An individual source might not contain all of the information listed under Analysis.

Table 5. Sources of Performance Indicators

Area Source Analysis

Blockset ICE143I, ICE189A,
ICE800I, SMF16,
IEXIT, TEXIT

Ensure the Blockset technique is being used or determine why it
is not being used.

Intermediate merge TEXIT Ensure there are no intermediate merges for a Blockset sort (if
appropriate). An intermediate merge is a condition caused by a
very low virtual storage to data set size ratio, and usually results
in significant performance degradation. Providing sufficient virtual
storage to DFSORT eliminates intermediate merges.

Virtual storage ICE039A, ICE080I,
ICE092I, ICE093I,
ICE115A, ICE156I,
ICE231I, JLOG,
SMF30, TEXIT

Ensure adequate storage is available both above and below
16MB virtual or determine how much more storage is needed.
Note: JES log messages and SMF type-30 fields can be
misleading as to how much storage DFSORT actually uses. The
DFSORT messages and ICETEXIT values contain the actual
amount of storage used by DFSORT.

DFSORT storage options ICE128I, ICE130I,
ICE131I, IEXIT,
TEXIT

Ensure SIZE=MAX or MAINSIZE=MAX is used and RESALL,
TMAXLIM, MAXLIM, OVERRGN, DSA and MINLIM values are
appropriate.

Work data sets ICE129I, ICE165I,
JLOG, SMF16,
SMF30, TEXIT,

Determine whether dynamic allocation or JCL allocation of work
data sets is used, how much work space is allocated and used,
and to what types of devices the data sets are allocated. In
addition, ensure that the work space is minimized.

Hipersorting ICE133I, ICE180I,
IEXIT, SMF16,
TEXIT

Ensure Hipersorting is used, if appropriate, and determine how
much Hiperspace is used.

Dataspace sorting ICE133I, ICE188I,
IEXIT, SMF16,
TEXIT

Ensure dataspace sorting is used, if appropriate, and determine
how much data space is used.

CPU time JLOG, SMF16,
SMF30, TEXIT

Determine the effects of tuning on CPU time.

Elapsed time JLOG, SMF16,
SMF30, TEXIT

Determine the effects of tuning on elapsed time.

Performance Data

Chapter 7. DFSORT Performance Data 73

|
|

|
|
|

Table 5. Sources of Performance Indicators (continued)

Area Source Analysis

EXCPs ICE804I, JLOG,
SMF16, SMF30,
TEXIT

Determine the effects of tuning on EXCPs.

Device connect time SMF30 Determine the effects of tuning on device connect time.

Storage control cache TEXIT Ensure storage control units with cache are used, and that cache
fast write is used.

System determined block
size

ICE090I, ICE210I Ensure system-determined block size is used for output data
sets, when appropriate.

Block sizes ICE088I, ICE090I,
ICE2101, SMF16,
TEXIT

Ensure adequately large block sizes are used for input and output
data sets.

DASD extents SMF16, TEXIT Ensure the number of extents required for input, output, and work
data sets is minimized.

DFSORT SVC ICE145A, ICE187I,
ICE191I, ICE194I,
ICE816I

Ensure that the DFSORT SVC is available.

Residency ICE129I Ensure that DFSORT modules are resident, if appropriate.

DFSORT level ICE000I, SMF16,
TEXIT

Ensure that the latest DFSORT level is installed.

Control field length SMF16, TEXIT Ensure that the control fields are only as long as necessary to
distinguish the records.

EQUALS ICE128I, TEXIT,
SMF16

Ensure that the EQUALS option is used only when necessary.

VERIFY ICE129I, IEXIT,
TEXIT

Ensure that the VERIFY option is used only when necessary.

Number of DASD work data
sets and devices

ICE804I, JLOG,
SMF16, SMF30,
TEXIT

For DASD-only work data set applications, ensure that at least
three data sets are used and that the data sets are on separate
devices.

Type of application (sort,
merge, or copy)

ICE143I, SMF16,
IEXIT, TEXIT

Understand the type of application and tune accordingly.

Record length and format ICE088I, ICE089I,
ICE090I, ICE091I,
ICE210I, SMF16,
TEXIT

Understand what type of data is being processed, and tune
accordingly.

Input, work, and output data
set sizes

ICE054I, ICE055I,
ICE098I, ICE134I,
ICE227I, ICE228I,
SMF16, TEXIT

Understand the characteristics of the data being processed, and
tune accordingly.

VIO JLOG, SMF30 Ensure that VIO is only used when appropriate.

Sources of DFSORT Performance Information
OS/390 and MVS/ESA systems provide a wealth of performance data which is often
difficult to analyze in its raw form. You need to convert this raw data into processed
data that can be used for trend analysis and management reports. You can use
PMIO to help you get this kind of information. Service Level Reporter (SLR),
Enterprise Performance Data Manager (EPDM), and DFSORT/ICETOOL can also
provide useful performance information.

Performance Data

74 DFSORT Tuning Guide R14

||
|
|

Service Level Reporter
Service Level Reporter (SLR) is a post-processing program for system log data
sets. One of its capabilities is to process SMF records written by the system and by
products such as DFSORT, NetView, RMF, RACF, and DB2. Additionally, SLR can
process any sequential data set, provided you predefine the format.

Data is collected from log data sets into a VSAM relational database, from which
reports can be produced, either interactively or with batch jobs. With its Graphical
Data Display Manager (GDDM*) interface, SLR enables you to create additional
graphical representations of your reports.

Online
This consists of an ISPF dialog for both predefined reports and a powerful
ad-hoc report generator. The emphasis is on historical, trend-type reporting,
but very detailed data (down to the record level) can also be displayed.

Batch This is useful for submitting reports that occur on a regular basis. You can
use the online facility for report definition, but use batch mode for running
the reports.

The ability of SLR to provide both summary and detailed reports makes it a useful
tool for initial analysis of DFSORT performance information. Once a bottleneck has
been identified, it might be necessary to use other tools, although SLR data is often
sufficient.

Enterprise Performance Data Manager
Enterprise Performance Data Manager (EPDM) is also a post-processing program
for system log data sets. One of its capabilities is to process SMF records written
by the system and by products such as DFSORT, NetView, RMF, RACF, and DB2.
Additionally, EPDM can process any sequential data set, provided you predefine the
format.

Data is collected from log data sets into a DB2 relational database, from which
reports can be produced, either interactively or with batch jobs. With its Graphical
Data Display Manager (GDDM) interface, EPDM enables you to create additional
graphical representations of your reports.

Online
This consists of an ISPF dialog for both predefined reports and a powerful
ad-hoc report generator. The emphasis is on historical, trend-type reporting,
but very detailed data (down to the record level) can also be displayed.

Batch This is useful for submitting reports that occur on a regular basis. You can
use the online facility for report definition, but use batch mode for running
the reports.

The ability of EPDM to provide both summary and detailed reports makes it a useful
tool for initial analysis of DFSORT performance information. Once a bottleneck has
been identified, it might be necessary to use other tools, although SLR data is often
sufficient.

Performance Management for I/O
IBM can provide further tuning of DFSORT through the Performance Management
for I/O (PMIO) offering. If you need to reduce your batch application elapsed time or
the resources required to run batch, PMIO can provide an IBM Performance

Performance Data

Chapter 7. DFSORT Performance Data 75

Specialist who conducts a study using your installation’s SMF data. This study
results in specific tuning recommendations and usually consists of three phases:

Phase 1
This phase is focused on developing an overall approach to tuning the
batch applications. The available system resources and type of workloads
being tuned are examined. Then, an overall approach is devised for tuning
the batch applications that are being studied.

For example, a system with plenty of processor storage and CPU available
would be a good candidate for Hipersorting and OUTFIL, if the workload
could take advantage of them.

Phase 2
This phase is focused on application level analysis including:
v Which jobs run at what times?
v How many significant processing steps does each job have such as

DFSORT or DB2?
v What dependencies exist between various jobs?
v Which jobs fail and how?

Using this information, a decision is made about which jobs are most
worthwhile to tune.

Phase 3
During this phase, specific recommendations are provided to speed up or
overlap certain applications. For example, a job might be split into two. The
first step might include a sort using Hipersorting. The output of the first step
might be routed to the second step using SmartBatch Pipes.

In addition to the three phases, PMIO produces system-wide reports on DFSORT.
PMIO also provides information about the sort invocation being tuned by:

v Analyzing SMF Type-16 records produced by DFSORT. These give information
on the sort, merge or copy operation, including such items as elapsed time, CPU
time, bytes sorted, input and output data set information (such as data set block
size), and the amount of sort work I/O performed.

v Providing a more complete picture of the job and step in which the DFSORT
invocation is being performed. For example, many sorts are program-invoked.
Such a program might perform other processing which could be optimized. PMIO
“job dossiers” report on step characteristics (such as CPU time and storage
usage), job characteristics (such as the number of steps and lines printed), and
data set usage (using the “Life Of A Data Set” (LOADS) technique).

v Analyzing SMF Type-42 (subtype 6) records to provide detailed information on
data set performance.

v Analyzing SMF Type-91 records to provide information on balancing pipes.
DFSORT applications often run faster than their partners, so pipe balancing can
be important. For example, if a SORTOUT data set is piped, it may be necessary
to clone the readers of that pipe.

Though PMIO reports at the job level, it also provides system-wide analysis of
long-running DFSORT invocations. This analysis can be used to prioritize DFSORT
applications to be tuned.

DFSORT/ICETOOL
If you do not have access to SLR, PMIO, or similar information, you can use the
DFSORT editing functions in combination with the reporting capabilities of ICETOOL

Performance Data

76 DFSORT Tuning Guide R14

|

|
|
|
|

|
|

|
|
|
|

|
|

or OUTFIL to generate performance data reports. The INCLUDE/OMIT, OUTFIL,
and INREC/OUTREC control statements are helpful in selecting the particular fields
of the particular SMF, RMF, or other data records to be analyzed. ICETOOL or
OUTFIL can then be used to generate printable reports from the resulting raw data.
See Application Programming Guide for more information about ICETOOL, OUTFIL,
and editing functions.

Analysis Techniques for DFSORT Performance Data
After identifying where and how you can obtain the performance data, you need to
analyze the performance data. You need to understand your current use of
DFSORT in order to assess whether any changes are needed. Tuning might not be
necessary.

Investigating DFSORT use does not need to take a lot of effort or a long time. You
can investigate DFSORT a number of times, and with each iteration, look at a
different aspect or go into a greater level of detail. Where you begin depends on
how much time you have and the effort you are prepared to invest.

You can also investigate DFSORT use to ensure that any tuning you have done has
had the desired effect. Alternative techniques for investigating current DFSORT use
are described in this section and ordered according to how much effort is involved.

Regardless of which technique you choose, you might want to use the ICETOOL
DEFAULTS operator to list the ICEMAC installation defaults currently in effect at
your site. You can use this operator at any time to produce a list of the values for
each ICEMAC parameter for each of the four environment installation modules and
each of the four time-of-day installation modules. Refer to “ICEMAC” on page 33 for
information on ICEMAC and an example of an ICETOOL defaults job. The output
from DEFAULTS can help you analyze how you are using DFSORT and is
beneficial to have regardless of the level of analysis you are performing. See
Application Programming Guide and Installation and Customization for more
information about the ICETOOL DEFAULTS operator.

Simple Analysis
Generally, a few DFSORT applications at a site can be identified as being the
largest and longest running, or on a critical path. An application is said to be on a
critical path if any delay in its completion would delay the finish of the workload.
Tuning activities on the critical path can have a beneficial effect in reducing the
overall elapsed time of the batch workload. The performance of these applications
can determine whether you finish inside or overrun the batch window, or whether
you are using too many system resources. The “80/20 rule of thumb” applies to
DFSORT: often 80% of the system’s resources used by DFSORT are used by 20%
of DFSORT applications.

Start your investigation by concentrating on these applications. Use a SORTDIAG
DD statement (or make sure the ICEMAC option DIAGSIM=YES has been specified
for your site) to obtain all available messages.

DFSORT messages are a simple and effective source of information for individual
applications. They give you a picture of the processing and help you develop an
action plan.

Performance-related information in the DFSORT messages includes:
v Amount of virtual storage available

Performance Data

Chapter 7. DFSORT Performance Data 77

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

v DFSORT technique used
v Total bytes and records sorted
v Number and distribution of EXCPs by data set
v Work data set space allocated and used
v Hiperspace or data space used
v Availability of the DFSORT SVC
v Access methods and block sizes used
v Settings of various options (for example, EQUALS, VERIFY) that can affect

performance

Moderate Analysis
If you can take the time to do some analysis of all your DFSORT applications, you
can pinpoint more precisely where to tune your use of DFSORT to perform more
efficiently. The easiest way to start is to use information optionally provided by
DFSORT. To do this, you can use data from SMF records or an ICEIEXIT routine.

Using SMF Data
Four SMF record types are particularly useful for analyzing the performance of
DFSORT: type-30, type-16, type-42 and type-91. To collect an SMF record type,
make sure that the active SMFPRMxx member is set up to collect that particular
type. For type-30 records, make sure subtype 4 (step total) records are collected. If
device connect time and EXCP statistics are desired in the type-30 (subtype 4)
records, the DETAIL option must be in effect. For type-42 records, make sure
subtype 6 (data set statistics) records are collected. See MVS Installation and
Tuning Reference for more information on setting up an SMFPRMxx member.

Type-30 Records: SMF type-30 (subtype 4) records contain useful information on
the resource consumption of a particular job step. These include:

v CPU time (total, and broken down by field)

v Elapsed time

v EXCPs (total, and broken down by device)

v Device connect time, broken down by device

v Paging statistics

See MVS System Management Facilities for more detailed information on the
type-30 fields.

Type-16 Records: DFSORT produces SMF type-16 records. They contain data on
a particular DFSORT step. If you want to produce DFSORT SMF records,
DFSORT’s supplied ICEMAC default of SMF=NO must be changed to SMF=FULL
or SMF=SHORT, or SMF=FULL or SMF=SHORT must be specified on an OPTION
statement in DFSPARM or in the extended parameter list at run-time. This must be
done in addition to setting up the appropriate SMFPRMxx member. The DFSORT
SVC must be available for DFSORT to be able to write the SMF records to an SMF
data set. Refer to “DFSORT SVC” on page 26 for additional information.

Some of the fields in the type-16 record containing performance-related data are:

v Type of application (sort, merge, or copy)

v DFSORT technique used

v Elapsed, TCB, and SRB time used

v Type and length of records being sorted

v Total bytes and records sorted

v Work data set allocation data

Performance Data

78 DFSORT Tuning Guide R14

|
|
|
|
|
|
|
|

v Access methods and block sizes used

v Control field length

v Amount of Hiperspace and data space used

v Number of input and output data set I/O calls

v Number of work data set EXCPs

See Installation and Customization for a complete list of the type-16 fields.

There are several reasons why it might be convenient to use the DFSORT type-16
records:

v You already have procedures to analyze this information.

v The scope of the information you are interested in is limited to the information
available in the SMF records.

v You do not wish to write and maintain an analysis routine.

Type-42 Records: DFSMS/MVS produces SMF type-42 (subtype 6) records. They
contain information on a particular DASD data set OPEN for a particular job, such
as:

v Start Subchannels (SCCHs) (physical I/Os)

v Response time components (Connect, Disconnect, IOSQ and Pending times)

v Cache performance information

Both interval and CLOSE-time records are produced (unless interval recording is
disabled).

See MVS System Management Facilities for more detailed information on the
type-42 subtype 6 fields.

Type-91 Records: SmartBatch for OS/390 produces SMF type-91 records. They
contain information on the use of a particular SmartBatch pipe, such as:

v The jobs that use the pipe

v The number of blocks of data transferred through the pipe

v The number of waits on the pipe for empty or full

This information can help you balance pipes between DFSORT applications and
other applications.

See SmartBatch/MVS for more information on the fields in the SMF type-91 record.

Using ICEIEXIT Data
DFSORT enables you to provide an installation initialization exit (ICEIEXIT) routine
which can be used to examine some performance-related information about all
DFSORT applications at a site.

If present and activated, the ICEIEXIT routine is passed installation and run-time
information. As this book illustrates in later sections, the values of installation and
run-time parameters affect DFSORT performance.

The ICEIEXIT routine can examine installation and run-time information related to:
v Virtual storage limits
v Hiperspace limits
v Data space limits
v Use of VERIFY
v OUTFIL buffer space limits

Performance Data

Chapter 7. DFSORT Performance Data 79

|
|
|

|

|

|

|
|

|
|

|
|

|

|

|

|
|

|

as well as additional run-time information on:
v Type of DFSORT application (sort, merge, or copy)
v Method of invocation
v Use of the Blockset technique
v Use of storage above 16MB virtual

See Installation and Customization for complete information on how to write and
install an ICEIEXIT routine.

Thorough Analysis
To tune DFSORT thoroughly, you need extensive data about all DFSORT
applications run by you or your site, including elapsed time, CPU time, number of
EXCPs, and types and amounts of virtual storage used. JES logs and DFSORT
messages can be used to analyze an isolated number of applications, but this is not
practical to apply to a large number of DFSORT jobs. In addition, these sources do
not supply all of the data needed to perform such a thorough analysis of DFSORT
resource consumption.

Using ICETEXIT Data
DFSORT enables you to provide an installation termination exit (ICETEXIT) routine
which can be used to collect extensive performance-related information about all
DFSORT applications at a site.

If present and activated, the ICETEXIT routine is called at the end of DFSORT
application processing. It is available for those who wish to make a thorough
analysis of DFSORT performance data using a single source of information. See
Installation and Customization for complete information on how to write and install
an ICETEXIT routine.

ICETEXIT provides comprehensive information on each DFSORT application,
including the information contained in DFSORT’s type-16 SMF record.

Note: The SMF record is available to the ICETEXIT routine even if the SMF facility
is not being used (in this case, the SMF record is constructed and passed to
the ICETEXIT routine, but not written to the SMF data set).

Additional information available to the ICETEXIT routine includes:
v Control statements specified
v User exits used
v Options (for example, VERIFY) in effect
v Control field formats used
v Work data set EXCPs broken down by data set and DFSORT phase
v Use of cache fast write
v Virtual storage statistics
v DFSORT phase timing statistics (elapsed, TCB, SRB)
v Input and output data set statistics
v Hipersorting statistics
v Sorting with data space statistics

In some cases, you only need a portion of this information for performance and
tuning reasons.

The advantage of using an ICETEXIT routine is that all the information about each
DFSORT application is available to the routine. You do not need to use information
from a number of other sources. How you process the data depends on your
requirements.

Performance Data

80 DFSORT Tuning Guide R14

Examples of how you can use an ICETEXIT routine include:

v Collating information from SMF type-16 records with run-time and installation
option values to identify applications with options which degrade performance.

v Write an SMF record using your own format.

You can write the record to a private data set for subsequent processing.

You can process SMF records or private data set records using a data reduction
program such as SLR. Refer to “Service Level Reporter” on page 75 for a
description.

The example in “Appendix A. Sample ICETEXIT” on page 85 provides a sample
ICETEXIT assembler routine. This installation-wide exit creates a user SMF record
from the data passed by DFSORT.

The assembler source for an SVC which writes the user SMF record to SMF is also
included. This enables the ICETEXIT routine to run unauthorized but write SMF
records using the SVC.

See Installation and Customization for more information on how to write and install
an ICETEXIT routine,

Using RMF Data
Using ICETEXIT data enables you to understand the details of how DFSORT is
being used at your site. But in addition to optimizing the performance of individual
or groups of sort applications, it is also very important to pay some attention to the
system’s overall performance when making tuning decisions for DFSORT.

Using SMF type-30 records and certain RMF reports, such as the I/O device
activity, the paging activity, and the address space resource data reports, enables
you to measure the amount of impact (if any) on system resources that is caused
by DFSORT applications. With this information it is possible to balance DFSORT’s
resource requirements with those of the other applications on the system.

See Analyzing RMF Reports for more information about RMF reports.

DFSORT Requirements and System Resources
The previous sections described the significance of understanding your site’s
current use of DFSORT, in making the proper DFSORT tuning decisions. But in
addition to optimizing the performance of individual or groups of sort applications, it
is also very important to pay some attention to the system’s overall performance
when making tuning decisions for DFSORT (or tuning decisions for any application,
for that matter). System resources are always limited, and a heavy overcommitment
of resources usually means a severe performance degradation for the entire
system. So it is advisable to balance DFSORT’s resource requirements with those
of the other applications on the system.

Analyzing system performance is usually accomplished with the Resource
Measurement Facility (RMF) or an equivalent product. Many different types of
reports can be generated with RMF, such as CPU Activity Reports, I/O Activity
Reports, and Paging Activity Reports. A lot of very useful information is contained in
these reports, but for the purpose of this discussion on DFSORT tuning, only the

Performance Data

Chapter 7. DFSORT Performance Data 81

I/O and Paging Activity Reports will be addressed. For detailed information on
system-wide tuning in general, see the SPL: Initialization and Tuning and Resource
Measurement Facility User’s Guide

Placement of Data Sets
The RMF I/O Device Activity Report provides device related information such as
average response times, average connect and disconnect times, and average
activity rates. This data is furnished for each online I/O device in one or more
device classes. The information in the I/O Activity Report (in conjunction with the
Channel Activity and I/O Queueing Activity reports) can help you to identify possible
areas of device contention. For instance, if the report shows a high device activity
rate and an unusually large pending time for a particular device (or group of
devices) containing DFSORT work data sets, the performance of the sort
application was most certainly adversely affected. If it turns out that the volumes
selected for the work data sets happened to, for example, also contain the tables
for a very active data base, it might be advantageous to make changes to the
applications or to the I/O configuration that would prevent future allocation of
DFSORT work data sets to those particular devices. The same idea holds true for
DFSORT input and output data sets, and in general for any application on the
system; if there is a lot of contention for a few I/O devices, the data on those
devices should be distributed over more (less active) volumes to achieve an overall
balance in I/O activity rates. Keep in mind that for best DFSORT performance, the
input and work data sets, as well as the work and output data sets should be
located on different volumes, or even different storage subsystems if possible.

Use of Virtual Storage
The RMF Paging Activity Report contains two fields that can be especially useful in
determining contention for central storage resources. The high unreferenced interval
count (HUIC) is shown in the expanded storage movement rates section, and the
minimum total available central storage frames is shown in the frame and slot
counts section. If the Paging Activity Report indicates a very low HUIC and an
unusually low available frame count for extended periods of time, then the system is
suffering from contention for central storage.

You can use SMF type-30 records to pinpoint which jobs or set of jobs are using
the most virtual storage. If these are not DFSORT applications, you may be able to
reduce the REGION parameters in the JCL for those jobs, or restrict the available
region sizes and limits for those jobs in the IEFUSI system exit. If they are
DFSORT jobs, there are two possible actions:

1. Restrict the virtual storage available to DFSORT. This can be done by setting
lower TMAXLIM/MAXLIM/DSA installation defaults, or by dynamically restricting
the storage size in an ICEIEXIT, or by a combination of the two.

2. Restrict DFSORT’s use of dataspace sorting. This can be accomplished by
setting a DSPSIZE=n value as installation default where n is the dataspace size
limitation for every sort job. The appropriate value to use for n is best
determined by experimentation on the system in question. A good technique to
use would be to start out with a very low value and then keep raising it by
10MB or 20MB for as long as system performance is not affected significantly.
In cases of severe overcommitment of central storage, a DSPSIZE=0 default
may be advisable.

However, the possible performance consequences for the DFSORT applications
should be taken into account. Refer to “Virtual Storage and Sorting with Data

Performance Data

82 DFSORT Tuning Guide R14

|
|
|

Space” on page 49 for more information. Performance critical DFSORT jobs may
have to be excluded from these storage restrictions.

Use of Expanded Storage
Similar to the central storage frame counts, the minimum total available expanded
storage frame counts can be used to gauge the amount of contention for expanded
storage resources. The expanded storage frame counts are also contained in the
frame and slot count section of the RMF Paging Activity Report. If the report
indicates an unusually low available frame count for extended periods of time, then
the system is suffering from a contention for expanded storage.

Use of VIO Data Sets
Another useful measurement contained in the RMF Paging Activity Report is the
total system VIO page-in and page-out rates, which are displayed in the central
storage paging rates section. Unusually high VIO paging rates can indicate an
overuse of VIO data sets. With the exception of sorting applications that process
only very small files, it is generally undesirable to allow the use of VIO devices for
DFSORT output and especially DFSORT work data sets. Refer to
“System-Managed Storage” on page 21 for details on how to prevent VIO
allocations for DFSORT data sets when using DFSMS.

Performance Trade-Offs
Table 6 is a summary of the techniques described in this book for improving
DFSORT performance. In many cases (use of Blockset is a notable exception), an
improvement in performance is not free. The figure summarizes these potential
trade-offs: increased paging, increased swapping, increased CPU time, and
changes needed to applications.

For example, to use this figure, assume you want to improve the elapsed time for a
DFSORT application. A number of techniques exist to choose from, ranging from
ensuring that DFSORT uses Blockset to modifying the way the application uses
DFSORT. You can decide which technique, or combination of techniques, is
appropriate based on the effort required and the trade-off, if any, you are prepared
to accept.

Table 6. Summary of Potential Performance Trade-Offs

Improvement Area Technique

Potential Trade-Offs

Increased
Paging

Increased
Swapping

Increased
CPU Time

Change
Application

CPU Time Use Blockset

Use dataspace sorting

Use 3990 storage control for input data
sets 1

Increase Virtual Storage Y Y

Use appropriate large block sizes for
input and output data sets

Use DFSORT functions and exits Y

Performance Data

Chapter 7. DFSORT Performance Data 83

Table 6. Summary of Potential Performance Trade-Offs (continued)

Improvement Area Technique

Potential Trade-Offs

Increased
Paging

Increased
Swapping

Increased
CPU Time

Change
Application

Elapsed Time Use Blockset

Use dataspace sorting

Use multiple work data set devices

Use cached 3990 storage control for
work data sets 1

Increase Virtual Storage Y Y

Use Hipersorting Y

Use VIO data sets Y Y

Use appropriate large block sizes for
input and output data sets

Use DFSORT functions and exits Y

Use SmartBatch Pipes Y

Use striping

I/O Activity Use Blockset

Increase Virtual Storage Y Y

Use Hipersorting Y

Use dataspace sorting

Use appropriate large block sizes for
input and output data sets

Use DFSORT functions and exits Y

Use SmartBatch Pipes Y

Use striping

Work Data Set
Space

Use Hipersorting Y

Use dataspace sorting

Increase Virtual Storage Y Y

Specify number of records when
appropriate

Y

1. Requires the DFSORT SVC.

Performance Data

84 DFSORT Tuning Guide R14

|

|

Appendix A. Sample ICETEXIT

This appendix contains Programming Interface information.

This appendix contains a sample ICETEXIT routine which creates a composite
record containing all of the data areas passed to ICETEXIT and subsequently writes
it out to SMF as user record 129. When ICEMAC option TEXIT=YES is specified,
DFSORT calls the ICETEXIT routine at the end of each DFSORT application run at
the site.

Because this routine does not run as an authorized program, an SVC is required to
write the record to SMF. (This user SVC is unrelated to the SVC used by DFSORT
itself.) DFSORT SVC shows a sample SVC that can be used for this purpose.
However, before installing it as a user SVC at your site, you should consider the
security implications of using the SVC as is.

Note: The use of this ICETEXIT routine and associated SVC does not replace the
DFSORT capability to issue its own type-16 SMF record. If you want
DFSORT to issue the type-16 SMF record, use ICEMAC or run-time option
SMF=SHORT or SMF=FULL. Depending upon how you install the DFSORT
SVC, you may have to change ICEMAC option SVC=n. See Installation and
Customization for details.

You can obtain the sample ICETEXIT and SVC shown in this appendix from the
DFSORT FTP site. The file is TGSAMP.ZIP.

ICETEXIT TITLE 'SAMPLE ICETEXIT ROUTINE'

* SAMPLE ICETEXIT ROUTINE. *
* PURPOSE: *
* THIS ROUTINE WILL COMBINE ALL OF THE DATA AREAS PASSED *
* TO ICETEXIT IN ONE USER SMF RECORD ID 129. THESE *
* RECORDS CAN THEN BE ANALYZED AS A GROUP. *
* *
* NOTES: *
* 1) SEE "DFSORT INSTALLATION AND CUSTOMIZATION" FOR FULL DETAILS *
* ON ICETEXIT *
* 2) THIS EXAMPLE ASSUMES THE USE OF SVC 249 - CHANGE IT AS *
* APPROPRIATE IF YOU USE A DIFFERENT SVC *
* *
* REQUIRED DFSORT MACROS: ICESMF, ICEDTEX *
* REQUIRED SYSTEM MACROS: SAVE, GETMAIN, TIME, FREEMAIN, RETURN, *
* CVT, IEESMCA, YREGS *

SPACE 1
ICETEXIT CSECT
ICETEXIT AMODE 24
ICETEXIT RMODE 24

SPACE 1

Figure 17. Sample ICETEXIT (Part 1 of 9)

© Copyright IBM Corp. 1992, 1998 85

|
|

* INITIALIZATION. *

SPACE 1
SAVE (14,12),,ICETEXIT-&SYSDATE;-&SYSTIME;
LR R12,R15 EPA FOR BASE
USING ICETEXIT,R12
LR R11,R1 SAVE ICETPAR ADDR
USING ICETPAR,R11
LA R0,DSALTH LENGTH OF DSA TO GETMAIN

GETMAIN RC,LV=(0)
LTR R15,R15 DID WE GET STORAGE?
BNZ S01L990 NO..THEN GET OUT
ST R1,8(,R13) FORWARD CHAIN
ST R13,4(,R1) BACKWARD CHAIN
LR R13,R1 ->NEW SAVE AREA
USING DSA,R13
SPACE 1

* COMPUTE SIZE OF USER SMF RECORD TO BE BUILT. *

SPACE 1
L R0,SDASMFL LENGTH OF CONSTANT PORTIONS
ICM R1,B'1111',ICETSMFA ->SORT SMF RECORD
BZ S01L100 BRANCH IF NOT ONE..
USING ICESMFH,R1
AH R0,ICERDW + LENGTH
DROP R1
SPACE 1

S01L100 DS 0H
ST R0,DSASMFL SAVE FOR LATER FREEMAIN

GETMAIN RC,LV=(0)
LTR R15,R15 DID WE GET THE STORAGE?
BNZ S01L950 NO..THEN EXIT
LR R8,R1 LOAD FOR BASE
USING ICE81RCD,R8
SPACE 1
LR R0,R1 TO ADDR
L R1,DSASMFL TO LENGTH
SR R14,R14 NO FROM ADDR
LR R15,R14 NO FROM LENGTH
MVCL R0,R14 ZERO THE AREA
SPACE 1

Figure 17. Sample ICETEXIT (Part 2 of 9)

Sample ICETEXIT

86 DFSORT Tuning Guide R14

* NOW BUILD THE SMF HEADER. *

SPACE 1
MVI ICE81RTY,129 SET RECORD TYPE
TIME BIN
STM R0,R1,ICE81TME SAVE TIME/DATE
L R1,16 ->CVT
USING CVT,R1
L R1,CVTSMCA ->SMCA
USING SMCABASE,R1
MVC ICE81SID,SMCASID GET SYSID
DROP R1
LA R9,ICE81LTH LENGTH OF HEADER
LA R10,0(R9,R8) ->FIRST AVAILABLE POSITION
SPACE 1

* APPEND THE DFSORT SMF RECORD. *

SPACE 1
ICM R2,B'1111',ICETSMFA -> DFSORT SMF RECORD
BZ S01L110 BRANCH IF NONE
SPACE 1
STH R9,ICE81ROF SAVE OFFSET
USING ICESMFH,R2
LH R1,ICERDW LENGTH OF SMF RECORD
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

* APPEND THE SMF STATISTICS. *

SPACE 1
S01L110 DS 0H

ICM R2,B'1111',ICETSST -> SMF STATISTICS
BZ S01L120 BRANCH IF NONE
STH R9,ICE81SOF SAVE OFFSET
USING ICESST,R2
L R1,ICESMFST LENGTH OF SMF STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

Figure 17. Sample ICETEXIT (Part 3 of 9)

Sample ICETEXIT

Appendix A. Sample ICETEXIT 87

* APPEND THE GENERAL STATISTICS. *

SPACE 1
S01L120 DS 0H

ICM R2,B'1111',ICETGEN -> GEN STATISTICS
BZ S01L130 BRANCH IF NONE
STH R9,ICE81GOF SAVE OFFSET
USING ICEGEN,R2
L R1,ICEGSTAT LENGTH OF GEN STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

* APPEND THE OPTIONS STATISTICS. *

SPACE 1
S01L130 DS 0H

ICM R2,B'1111',ICETOPTS -> OPTIONS STATISTICS
BZ S01L140 BRANCH IF NONE
STH R9,ICE81OOF SAVE OFFSET
USING ICEOPTS,R2
L R1,ICEOSTAT LENGTH OF OPTIONS STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

Figure 17. Sample ICETEXIT (Part 4 of 9)

Sample ICETEXIT

88 DFSORT Tuning Guide R14

* APPEND THE SORT/MERGE STATISTICS. *

SPACE 1
S01L140 DS 0H

ICM R2,B'1111',ICETSMS -> SORT/MERGE STATISTICS
BZ S01L150 BRANCH IF NONE
STH R9,ICE81MOF SAVE OFFSET
USING ICESMS,R2
L R1,ICEFSTAT LENGTH OF SORT/MERGE STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

* APPEND THE VIRTUAL STORAGE STATISTICS. *

SPACE 1
S01L150 DS 0H

ICM R2,B'1111',ICETVIRT -> VIRTUAL STORAGE STATISTICS
BZ S01L160 BRANCH IF NONE
STH R9,ICE81VOF SAVE OFFSET
USING ICEVSTOR,R2
L R1,ICEVSTAT LENGTH OF VIRTUAL STORAGE STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

* APPEND THE PHASE TIMING STATISTICS. *

SPACE 1
S01L160 DS 0H

ICM R2,B'1111',ICETPTIM -> PHASE TIMING STATISTICS
BZ S01L170 BRANCH IF NONE
STH R9,ICE81TOF SAVE OFFSET
USING ICEPHAST,R2
L R1,ICEPTIME LENGTH OF PHASE TIMING STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

Figure 17. Sample ICETEXIT (Part 5 of 9)

Sample ICETEXIT

Appendix A. Sample ICETEXIT 89

* APPEND THE SORTIN STATISTICS. *

SPACE 1
S01L170 DS 0H

ICM R2,B'1111',ICETSIN -> SORTIN STATISTICS
BZ S01L180 BRANCH IF NONE
STH R9,ICE81XOF SAVE OFFSET
USING ICESRTIN,R2
L R1,ICESORTI LENGTH OF SORTIN STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

* APPEND THE SORTOUT STATISTICS. *

SPACE 1
S01L180 DS 0H

ICM R2,B'1111',ICETSOUT -> SORTOUT STATISTICS
BZ S01L190 BRANCH IF NONE
STH R9,ICE81ZOF SAVE OFFSET
USING ICESRTOT,R2
L R1,ICESORTO LENGTH OF SORTOUT STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

* APPEND THE SORTWK STATISTICS. *

SPACE 1
S01L190 DS 0H

ICM R15,B'1111',ICETSWK -> SORTWK STATISTICS
BZ S01L200 BRANCH IF NONE
STH R9,ICE81WOF SAVE OFFSET
USING ICEWRKDS,R15
L R1,ICESORTW LENGTH OF SORTWK STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R2,R15 FROM ADDRESS
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
SPACE 1

Figure 17. Sample ICETEXIT (Part 6 of 9)

Sample ICETEXIT

90 DFSORT Tuning Guide R14

* APPEND THE SORTWK DATA SET ENTRIES. *

SPACE 1
LH R7,ICESWKEN # SORTWK DATA SET ENTRIES
STH R7,ICE81EEN SAVE IN SMF RECORD
STH R9,ICE81EOF SAVE OFFSET
LA R15,ICESWK01 ->FIRST IN LIST
DROP R15

S01L195 DS 0H
L R2,0(,R15) ->ICEWORK
USING ICEWORK,R2
L R1,ICESWORK LENGTH OF SORTWK DATA SET ENTRY
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
SPACE 1
LA R15,4(,R15) ->NEXT IN LIST
BCT R7,S01L195 DO ALL IN LIST
SPACE 1

* APPEND THE HIPERSORTING STATISTICS. *

SPACE 1
S01L200 DS 0H

ICM R2,B'1111',ICETHIPR -> HIPERSORTING STATISTICS
BZ S01L210 BRANCH IF NONE
STH R9,ICE81HOF SAVE OFFSET
USING ICEHIPER,R2
L R1,ICEHSORT LENGTH OF HIPERSORTING STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT SMF RECORD
DROP R2
SPACE 1

Figure 17. Sample ICETEXIT (Part 7 of 9)

Sample ICETEXIT

Appendix A. Sample ICETEXIT 91

--
* APPEND THE SORTING WITH DATA SPACE STATISTICS *
--

SPACE 1
S01L210 DS 0H

ICM R2,B'1111',ICETDATA -> SORTING WITH DATA SPACE STATS
BZ S01L220 BRANCH IF NONE
STH R9,ICE81DOF SAVE OFFSET
USING ICEDATAS,R2
L R1,ICEDSORT LENGTH OF DATA SPACE STATISTICS
LR R0,R10 TO ADDRESS
AR R9,R1 INCREMENT LENGTH/OFFSET
AR R10,R1 ->AFTER SMF RECORD
LR R3,R1 FROM LENGTH
MVCL R0,R2 APPEND DFSORT DATA SPACE STATS
DROP R2
SPACE 1

* SMF RECORD IS BUILT. SEND IT OFF TO SMF. *

SPACE 1
S01L220 DS 0H

STH R9,ICE81LEN SAVE IN RDW
BAL R15,S01L700 BRANCH AROUND LABEL
DC C'USMF' SVC PASSWORD

S01L700 DS 0H
L R0,0(,R15) LOAD INTO PARM REGISTER
LR R1,R8 -> USER SMF RECORD

* SVC 249 IS USED IN THIS EXAMPLE - CHANGE THIS CALL AS APPROPRIATE

SVC 249 CALL SVC TO WRITE RECORD
SPACE 1

* ALL DONE. FREE STORAGE AND RETURN. *

SPACE 1
LR R1,R8 -> SMF RECORD
L R0,DSASMFL LENGTH OF AREA

FREEMAIN R,LV=(0),A=(1)
SPACE 1

S01L950 DS 0H
LA R0,DSALTH LENGTH OF AREA
LR R1,R13 ->AREA
L R13,4(,R1) ->CALLER'S SAVEAREA

FREEMAIN R,LV=(0),A=(1)
SPACE 1

S01L990 DS 0H
RETURN (14,12),,RC=0
TITLE 'S D A - STATIC STORAGE AREA (CONSTANTS)'
SPACE 1

Figure 17. Sample ICETEXIT (Part 8 of 9)

Sample ICETEXIT

92 DFSORT Tuning Guide R14

*--------CONSTANT DEFINING THE COMBINED LENGTHS OF ALL DATA AREAS
* EXCEPT FOR THE DFSORT SMF RECORD (ICESMF)

SPACE 1
SDASMFL DC A(ICE81LTH+L'ICESMEND+L'ICEGNEND+L'ICEOEND+L'ICESSEND+L'X

ICEVEND+L'ICETMEND+L'ICESNEND+L'ICESOEND+L'ICESWEND+(32*X
L'ICESEEND)+L'ICEHREND+L'ICEDSEND)

TITLE 'D S A - DYNAMIC STORAGE AREA'
DSA DSECT
DSASAVE DS 18A SAVE AREA
DSASMFL DS F LENGTH OF USER SMF RECORD AREA
DSALTH EQU (*-DSA) LENGTH OF DSA

TITLE 'DFSORT USER SMF RECORD GENERATED FROM ICETEXIT ROUTINE'
SPACE 1

ICE81RCD DSECT
ICE81LEN DS H RECORD LENGTH
ICE81SEG DS H SEGMENT DESCRIPTOR
ICE81FLG DS XL1 SYSTEM INDICATOR
ICE81RTY DS AL1 RECORD TYPE = AL1(129)
ICE81TME DS XL4 TIME, IN HUNDREDTHS OF A SECOND
ICE81DTE DS PL4 DATE, IN FORM 00YYDDDF
ICE81SID DS CL4 SYSTEM IDENTIFICATION

SPACE 1
ICE81ROF DS H OFFSET TO SORT SMF RECORD (ICESMF)
ICE81SOF DS H OFFSET TO SMF STATS (ICESST)
ICE81GOF DS H OFFSET TO GENERAL STATS (ICEGEN)
ICE81OOF DS H OFFSET TO OPTION STATS (ICEOPTS)
ICE81MOF DS H OFFSET TO SORT/MERGE STAT (ICESMS)
ICE81VOF DS H OFFSET TO VIRT STOR. STAT (ICEVSTOR)
ICE81TOF DS H OFFSET TO TIMING STATS (ICEPHAST)
ICE81XOF DS H OFFSET TO SORTIN STATS (ICESRTIN)
ICE81ZOF DS H OFFSET TO SORTOUT STATS (ICESRTOT)
ICE81WOF DS H OFFSET TO SORTWK STATS (ICEWRKDS)
ICE81EOF DS H OFFSET TO SORTWK ENTRY (ICEWORK)
ICE81EEN DS H # OF ICEWORK ENTRIES
ICE81HOF DS H OFFSET TO HIPER STATS (ICEHIPER)
ICE81DOF DS H OFFSET TO DATASPACE STATS (ICEDATAS)
ICE81LTH EQU *-ICE81RCD LENGTH OF COMMON PORTION

ICESMF
ICEDTEX
PRINT NOGEN
CVT LIST=NO,DSECT=YES

IEESMCA
YREGS
END

Figure 17. Sample ICETEXIT (Part 9 of 9)

Sample ICETEXIT

Appendix A. Sample ICETEXIT 93

IGC0024I TITLE 'SAMPLE SVC 249 - WRITE A USER SMF RECORD'

* SAMPLE SVC 249 - WRITE A USER SMF RECORD *
* PURPOSE: *
* THIS SVC IS INVOKED BY THE SAMPLE ICETEXIT *
* ROUTINE TO WRITE THE USER SMF RECORD WITHOUT *
* BEING APF AUTHORIZED. *
* *
* NOTES: *
* 1) THIS EXAMPLE ASSUMES THE USE OF SVC 249 - CHANGE IT AS *
* APPROPRIATE IF YOU USE A DIFFERENT SVC. *
* 2) THIS EXAMPLE USES A SIMPLE PASSWORD CHECK TO VERIFY THAT IT *
* IS BEING CALLED BY ICETEXIT. SINCE THIS PASSWORD SCHEME COULD *
* EASILY BE COMPROMISED, YOU SHOULD CAREFULLY EVALUATE THE *
* RISKS IN USING IT AS IS IF YOU INSTALL IT IN YOUR SYSTEM. *
* *
* REQUIRED SYSTEM MACROS: SMFWTM, YREGS *

SPACE 1
IGC0024I CSECT

USING IGC0024I,R6
C R0,PASSWORD IS THE PASSWORD CORRECT?
BNER R14 NO..RETURN TO CALLER
SMFWTM (1) WRITE THE SMF RECORD
BR R14 RETURN TO CALLER
SPACE 1
DS 0F

PASSWORD DC CL4'USMF'
YREGS
END

Figure 18. Sample SVC 249 to Write a SMF User Record

94 DFSORT Tuning Guide R14

Appendix B. Estimating Elapsed Time

Before you try to improve the elapsed time for a particular sort, it is useful to
calculate an estimate of the best possible time you could achieve as a basis for
comparison.

The following is an example of how to calculate the minimum elapsed time needed
for a fixed-length record sort based on the following assumptions:

v Work data sets are not used.

v There are 2868536 records and each record is 568 bytes in length.

v The input block size is 27832 bytes resulting in 2 blocks per track.

v 3390 devices are used for input and output.

v A 3390 device has 15 tracks per cylinder.

v Reading a 3390 device at a sustained rate takes 16 disk revolutions per cylinder
and 14.1 msec per revolution.

To calculate the elapsed time, complete the following steps:

1. Multiply the number of records by the record length to get the number of bytes
in the input data set:

2868536 x 568 = 1629328448 bytes in the input data set

2. Divide the bytes in the input data set by the input block size to get the number
of blocks in the input data set (round up to the next whole block):

1629328448
---------- = 58542 blocks in the input data set

27832

3. Divide the number of blocks in the input data set by the number of blocks per
track to get the number of tracks (round up to the next whole track):

58542
------ = 29271 tracks

2

4. Divide the number of tracks by the number of tracks per cylinder to get the
number of cylinders required to store the input (round up to the next whole
cylinder):

29271
------ = 1951 cylinders required to store input data

15

5. Multiply the number of cylinders by the disk revolutions per cylinder to get the
total number of disk revolutions. Note that the number of disk revolutions per
cylinder (16) is one more than the number of tracks per cylinder (15) because it
takes an additional revolution to switch to the next cylinder:

1951 x 16 = 31216 disk revolutions

6. Multiply the number of disk revolutions by the number of seconds per revolution
to get the number of seconds to read theinput:

31216 x 0.0141 = 440 seconds to read the input

Note: The number of seconds per disk revolution for the 3380 is 0.0166 and for
the 9345 is 0.0112.

© Copyright IBM Corp. 1992, 1998 95

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

7. Multiply the number of seconds it takes to read the input by 2 to get the number
of seconds of elapsed time required to read and write the data:

440 x 2 = 880 seconds to read and write the data

Thus, for this example, the estimated elapsed time to read and write the data is 14
minutes and 40 seconds.

If you calculate this estimate for a particular sort and use it as a basis for
comparison, you will have a more realistic idea of what to expect when you try to
improve the elapsed time. Note that this estimate is somewhat lower than the true
minimum for elapsed time because it does not account for the additional seconds
DFSORT takes to initialize the sort, prime the buffers, flush the I/O buffers,
terminate the sort, and perform other administrative activities.

Time Estimates

96 DFSORT Tuning Guide R14

|

|
|

|
|

|
|
|
|
|
|

Summary of Changes

Release 13

New Programming Support for Release 13

DFSORT’s Performance Booster for The SAS** System
DFSORT Release 13 provides significant CPU time improvements for SAS
applications. To take advantage of this new feature, contact SAS Institute Inc. for
details of the support they provide to enable this enhancement.

Dynamic Hipersorting
Dynamic Hipersorting is a new, automatic feature that eliminates the unintended
system paging activity and expanded storage and paging data set space shortages
that sometimes resulted from a large amount of Hipersorting activity, especially from
multiple concurrent Hipersorting applications.

Dynamic Hipersorting allows for more optimal DFSORT and system performance
and provides installation options that allow you to customize HIPRMAX=OPTIMAL
to your own criteria. With the advent of this feature, we recommend that you use
HIPRMAX=OPTIMAL as your site default.

Performance
Performance enhancements for DFSORT applications that use the Blockset
technique include the following:

v Dataspace sorting, introduced in R12 for fixed-length record sort applications,
now available for variable-length record sort applications (MVS/ESA only)

v Improved data processing methods for fixed-length record sort applications

v OUTFIL processing for producing multiple output data sets using a single pass
over one or more input data sets.

OUTFIL Processing
OUTFIL is a new DFSORT control statement that allows you to create one or more
output data sets for a sort, copy, or merge application from a single pass over one
or more input data sets. You can use multiple OUTFIL statements, with each
statement specifying the OUTFIL processing to be performed for one or more
output data sets. OUTFIL processing begins after all other processing ends (that is,
after processing for exits, options, and other control statements). OUTFIL
statements support a wide variety of output data set tasks, including:

v Creation of multiple output data sets containing unedited or edited records from a
single pass over one or more input data sets.

v Creation of multiple output data sets containing different ranges or subsets of
records from a single pass over one or more input data sets. In addition, records
that are not selected for any subset can be saved in another output data set.

v Conversion of variable-length record data sets to fixed-length record data sets.

v Sophisticated editing capabilities such as hexadecimal display and control of the
way numeric fields are presented with respect to length, leading or suppressed
zeros, symbols (for example, the thousands separator and decimal point), leading
and trailing positive and negative signs, and so on. Twenty-six pre-defined editing
masks are available for commonly used numeric editing patterns, encompassing
many of the numeric notations used throughout the world. In addition, a virtually
unlimited number of numeric editing patterns are available via user-defined
editing masks.

© Copyright IBM Corp. 1992, 1998 97

v Selection of a character or hexadecimal string for output from a lookup table,
based on a character, hexadecimal, or bit string as input (that is, lookup and
change).

v Highly detailed three-level (report, page, and section) reports containing a variety
of report elements you can specify (for example, current date, current time, page
number, character strings, and blank lines) or derive from the input records (for
example, character fields, edited numeric input fields, record counts, and edited
totals, maximums, minimums, and averages for numeric input fields).

National Language Support

Cultural Sort and Merge: DFSORT will allow the selection of an active locale at
installation or run time and will produce sorted or merged records for output
according to the collating rules defined in the active locale. This provides sorting
and merging for single- or multi-byte character data based on defined collating rules
which retain the cultural and local characteristics of a language.

Cultural Include and Omit: DFSORT will allow the selection of an active locale at
installation or run time and will include or omit records for output according to the
collating rules defined in the active locale. This provides inclusion or omission for
single- or multi-byte character data based on defined collating rules which retain the
cultural and local characteristics of a language.

OUTFIL Reports: OUTFIL allows date, time, and numeric values in reports to be
formatted in many of the notations used throughout the world.

ICETOOL Reports: ICETOOL’s DISPLAY operator allows date, time, and numeric
values in reports to be formatted in many of the notations used throughout the
world.

ICETOOL Enhancements
ICETOOL is now even more versatile as a result of enhancements to the existing
operators. The improvements to ICETOOL include:

v Allowing more data to be displayed with the DISPLAY and OCCUR operators.
DISPLAY now allows up to 20 fields (increased from 10) and a line length of up
to 2048 characters (increased from 121). OCCUR now allows a line length of up
to 2048 characters (increased from 121).

v More extensive formatting capabilities for numeric fields with the DISPLAY
operator. Formatting items can be used to change the appearance of individual
numeric fields in reports with respect to separators, decimal point, decimal
places, signs, division, leading strings, floating strings and trailing strings.
Thirty-three pre-defined editing masks are available for commonly used numeric
editing patterns, encompassing many of the numeric notations used throughout
the world. Leading and trailing strings can also be used with character fields.

v Display of the four-digit or two-digit year with the DISPLAY and OCCUR
operators.

v Division of reports into sections with the DISPLAY operator, based on the values
in a character or numeric break field. Statistics (total, maximum, minimum and/or
average) can be displayed for each section as well as for the entire report.

v Automatic use of OUTFIL processing for a list of TO ddnames with the COPY
and SORT operators, resulting in creation of multiple TO (output) data sets from
a single pass over the FROM (input) data set.

v Allowing OUTFIL statements to be specified in the USING data set in addition to
or instead of the TO operand with the COPY and SORT operators.

98 DFSORT Tuning Guide R14

v Allowing the active locale to be specified for the COPY, COUNT and SORT
operators, in order to override the installation default for the active locale. Thus,
multiple active locales can be used in the same ICETOOL job step for these
operators.

v Allowing the last record for each unique field value to be kept with the SELECT
operator.

INCLUDE/OMIT Substring Search
INCLUDE and OMIT function enhancements provide powerful substring search
capability to allow inclusion or omission of records when:

v A specified character or hexadecimal constant is found anywhere within a
specified input field (that is, a constant is a substring within a field) or

v A specified input value is found anywhere within a specified character or
hexadecimal constant (that is, a field is a substring within a constant).

SMF Type-16 Record Enhancements
New fields, such as information pertaining to each DFSORT run about SORTIN,
SORTINnn, SORTOUT and OUTFIL data sets, control statements, record counts,
specified values for E15, E35, HIPRMAX, DSPSIZE, FILSZ, LOCALE and
AVGRLEN, have been added to DFSORT’s SMF type-16 record.

SMF=FULL, SMF=SHORT, and SMF=NO can now be specified in an OPTION
statement in DFSPARM or the extended parameter list, to produce or suppress the
SMF type-16 record for an individual application.

Note: The offsets of fields ICESPGN, ICEUSER, and ICEGROUP have changed in
the Release 13 SMF record. If you have programs that reference those
fields, recompile them using the Release 13 version of the ICESMF macro,
before attempting to run them against Release 13 SMF records.

Other Enhancements
Several ICEMAC installation options have been added or changed:

v The IBM-supplied default for EXCPVR has been changed from ALL to NONE.

v The IBM-supplied default for DYNAUTO has been changed from NO to YES.

v SDBMSG enables you to specify whether DFSORT should use the
system-determined optimum block size for DFSORT message data sets and
ICETOOL message and list data sets.

v LOCALE enables you to select an active locale.

v ODMAXBF enables you to specify the maximum buffer space DFSORT can use
for each OUTFIL data set.

v EXPMAX enables you to specify the maximum total amount of available storage
to be used for all Hipersorting applications.

v EXPOLD enables you to specify the maximum total amount of old expanded
storage to be used at any one time by all Hipersorting applications.

v EXPRES enables you to specify the minimum amount of available expanded
storage to be reserved by DFSORT for use by non-Hipersorting applications.

Several run-time options have been added or changed:

v LOCALE enables you to select an active locale.

v SMF enables you to specify whether DFSORT is to produce SMF type-16
records.

v ODMAXBF enables you to specify the maximum buffer space DFSORT can use
for each OUTFIL data set.

Summary of Changes 99

v NZDPRINT enables you to indicate that positive ZD summation results are not to
be converted to printable numbers (overrides ZDPRINT).

v HILEVEL=YES on the MODS statement enables you to indicate that the E15 and
E35 routines are to be treated as COBOL exits.

v DEBUG options BUFFERS=ANY and BUFFERS=BELOW will now be recognized
but not used.

DFSORT will now ignore any DD statements not needed for the application (for
example, a SORTIN DD statement will be ignored for a merge application).

For unsuccessful completion due to an unsupported operating system, DFSORT,
ICEGENER, and ICETOOL will now pass back a return code of 24 to the operating
system or invoking program.

The installation initialization exit, ICEIEXIT, enables you to specify the maximum
buffer space DFSORT can use for each OUTFIL data set.

The installation termination exit, ICETEXIT, contains additional fields such as a flag
to indicate that OUTFIL processing was used.

For INREC and OUTREC:

v The upper limit for columns and the end of fields has been raised from 32000 to
32752.

v 1: before the RDW field of variable-length records will be accepted and ignored.

For INCLUDE and OMIT, COND=ALL, COND=(ALL), COND=NONE, and
COND=(NONE) enable you to include or omit all records.

The L2 value from the RECORD statement will be used if the L1 value is not
specified when an E15 or E32 user exit passes all of the input records.

When input is a VSAM data set and output is a non-VSAM data set with RECFM
not specified, DFSORT will now set the output RECFM as blocked rather than
unblocked, when doing so will allow the use of the system-determined optimum
block size for output.

New Programming Support for Release 12 (PTFs)
ICEGENER, copy, and Blockset sort and merge can now be used when a tape
output data set is specified with DISP=MOD or DISP=OLD, without specifying the
RECFM, LRECL, or BLKSIZE in the DD statement.

Sequential striping is supported for input and output data sets.

Compression is supported for input and output data sets.

BatchPipes/MVS input and output pipes are supported.

New Device Support for Release 12 (PTFs)
Four-digit device numbers are supported.

The IBM 3390-9 DASD is supported for input, output, and work data sets, although
it is not recommended for work data sets for performance reasons.

100 DFSORT Tuning Guide R14

The IBM RAMAC Array DASD and RAMAC Array Subsystem are supported for
input, output, and work data sets.

The IBM 3990 Model 6 control unit is supported.

The IBM cached 9343 control unit models are supported.

Summary of Changes 101

102 DFSORT Tuning Guide R14

Index

Numerics
3380 devices

using Hiperspace 45
3390 devices

calculating elapsed time 95
DFSORT performance 52
using Hiperspace 45

3990 storage control
cache fast write (CFW) 12, 32
DFSORT performance 52, 83
documentation xiii
storage control cache 18

A
ACS (automatic class selection) 21
allocating storage

main storage 20
analysis

moderate 78
simple 77
thorough 80
using ICETEXIT 79, 80
using RMF 81
using SMF 78

application design
performance 57, 59, 64, 67, 68
productivity 57, 65, 68

assembler 57
automatic class selection (ACS) 21

B
batch window 3
BatchPipes 14

See SmartBatch 14
benefits

cache fast write (CFW) 12
dynamic storage adjustment (DSA) 11
eliminating intermediate merging 48
Hipersorting 8
ICEGENER 26
large I/O data set block sizes 52
OUTFIL 8
program residency 25
sorting with data space 10

BLDINDEX
general information 14

block sizes
DFSORT performance 72
I/O performance 51
recommendations 52
space utilization 50

Blockset technique
definition 7
messages 7
selecting 7
sources of data 72

Blockset technique (continued)
using SORTDIAG 7

C
cache fast write (CFW)

benefits 12
general information 12
operation 12
recommendations 32
using 45
with DFSORT SVC 26

caching mode 26
central storage 3, 18
CFW (cache fast write) 12

benefits 12
operation 12
recommendations 32
using 45
with DFSORT SVC 26

channel usage 4
COBOL

calling program 61, 65
E15 exit 58, 64
E35 exit 58, 64
FASTSRT 57, 58, 59, 64, 67, 68
GIVING 57, 58, 59
IGZSRTCD 57, 58, 64
inline code 59
INPUT PROCEDURE 57, 58, 60, 63
NOFASTSRT 57, 58, 59, 60, 64
OS/VS COBOL 57, 58, 59
OUTPUT PROCEDURE 57, 58, 60, 63
SORT statement 57, 63, 65, 67
USING 57, 58, 59
VS COBOL II 57, 58, 59

comparisons, performance xi
compression

general information 13
improving DFSORT performance 53

considerations, environmental 17
control cache, storage 18
control statements

ALTSEQ 48
IEBGENER 12
INCLUDE 48, 64, 76
INREC 48, 64, 76
MODS 29, 48
OMIT 48, 64, 65, 68, 76
OPTION 11, 44
OUTFIL 8, 48, 64, 76
OUTREC 48, 64, 76
SORT 67, 68
SUM 48, 64, 65, 68

Conventional technique 7
CPU time

estimating 95
fields for calculating 4

© Copyright IBM Corp. 1992, 1998 103

CPU time (continued)
sources of data 72
trade-offs 3, 83

D
DASD

cache 72
general information 19
trade-offs 3
utilization 5
work data sets 7

data analysis
moderate 78
simple 77
thorough 80

data sets
COBOL 58
compression 13
creating with OUTFIL 8
DASD 7
dynamic allocation 13
input and output 50
placement 82
SmartBatch 14
striping 13
system log 75
tape 7
temporary 21
VIO 83
work 7

data sources summary 72
data space

options that affect use 34
defaults

listing with ICETOOL 34
DEFAULTS operator (ICETOOL)

examples 34
listing installation defaults 34

definitions
Blockset technique 7
cache fast write (CFW) 12
channel usage 4
compression 13
CPU time 4
device connect time 4
dynamic allocation 13
dynamic storage adjustment (DSA) 11
elapsed time 5
EXCPs, execute channel program (EXCP)

commands 4
Hipersorting 8
HPT (Hiperspace Processing Time) 4
I/O activity 4
ICEGENER 12
IIP (I/O Interrupt Processing) 4
OUTFIL 8
RCT (Region Control Task) 4
sorting with data space 10
SRB (Service Request Block) 4
striping 13

definitions (continued)
system determined block size (SDB) 14
system paging activity 3
TCB (Task Control Block) 4

device connect time 4
devices

3380 45
3390 45, 95
DFSORT performance 52

DFSORT (Data Facility Sort)
cache fast write (CFW) 12
Cache fast write (CFW) 30
dynamic storage adjustment (DSA) 11
EXCPVR 30
Hipersorting 8, 30
ICEGENER 26
installation 25
installation defaults, changing 33
installing 25
program residency 25
publications list xii
run-time options 25
sorting with data space 10, 30
SVC 26, 72, 78, 85

DFSORT Home Page 1
DFSORT performance

3390 95
3390 devices 52
3990 storage control 52
block sizes 50
compression 53
data analysis 77
data set size 46
DSPSIZE parameter 41
expanded storage 83
gathering information 74
Hipersorting 42, 43
ICETOOL reports 76
indicators 69
input and output data sets 50
overview 72
placement of data sets 82
RMF 81
SmartBatch 53
sorting with data space 41
space utilization 50
striping 53
understanding trade-offs 83
using GDDM 75
using ICETEXIT data 79, 80
using Performance Management for I/O (PMIO) 75
using SLR 75
using SMF data 78
VIO data sets 83
VIO for DFSORT data sets 53
virtual storage 46, 48, 82

DFSORT requirements
balancing with system resources 81

DFSPARM 64, 67
documentation xii
DSA (dynamic storage adjustment) 11

104 DFSORT Tuning Guide R14

DSA (dynamic storage adjustment) 11 (continued)
benefits 11
operation 11

DSPSIZE parameter
DFSORT performance 41
sorting with data space 41

dynamic allocation of work data sets
general information 13

dynamic storage adjustment
general information 11

dynamic storage adjustment (DSA)
benefits 11
operation 11

E
E15 exit 58, 60, 63, 64
E35 exit 58, 60, 63, 64
elapsed time

definition 5
ESCON channels 19
estimating 95
sources of data 72
trade-offs 3, 83

Enterprise Performance Data Manager (EPDM) 75
Environment Installation Modules 33
environmental considerations 17
EPDM (Enterprise Performance Data Manager) 75
ESCON channels

elapsed time performance 19
virtual storage 47

estimating
CPU time 95
elapsed time 95

EXCPs, execute channel program (EXCP) commands
performance indicator 4
sources of data 72

EXCPVR (execute channel program virtual request)
sources of data 72
trade-offs 83
with DFSORT SVC 26

expanded storage 3, 18, 83
VIO 15

F
FASTSRT 57, 59, 64, 67, 68
file size option 45
FTP Site 1

G
GDDM (Graphical Data Display Manager) 75
general information, tuning 1
Graphical Data Display Manager (GDDM) 75
guidelines for virtual storage 49

H
hierarchy, storage 17
high speed buffer 72

Hipersorting
benefits 8
DFSORT performance 42, 43
general information 8
limitations 42
operation 9
options that affect use 34
recommendations 31
sources of data 72
trade-offs 83
using efficiently 42
using with your application 43

Hiperspace Processing Time (HPT) 4
HPT (Hiperspace Processing Time) 4

I
I/O activity

performance indicator 4
trade-offs 3, 83

I/O Interrupt Processing (IIP) 4
ICEGENER

benefits 26
comparison with IEBGENER 12
general information 12

ICEIEXIT 39, 71, 72, 79
ICEMAC 33
ICETEXIT 40, 72, 80, 85
ICETOOL 34
IDCAMS BLDINDEX

general information 14
IEFUSI 34
IGZSRTCD 57, 64
IIP (I/O Interrupt Processing) 4
INCLUDE control statement 64
input and output data sets

block sizes 50
DFSORT performance 50
performance 51

INREC control statement 64
installation defaults

changing 33
listing with ICETOOL 34
using ICEIEXIT 39
using ICEMAC 33

installation exits
advantages 39
documentation xiv
ICEIEXIT 71
ICETEXIT 72
IEFUSI 34
tuning purposes 39

installation modules
Environment 33
listing 34
Time-of-Day 33

installation performance options 34
installing DFSORT 25
Internet 1
invoking DFSORT 57

J
JES log 69, 72

Index 105

L
limitations

virtual storage 48

M
main storage

environmental considerations 20
factors affecting requirements 21
minimum 20
options that tailor 34

merging
intermediate 47
specifying number of records 45

messages 7, 70, 72, 77

N
NOFASTSRT 57, 58, 59, 60, 64

O
OMIT control statement 64, 65, 68
operation

cache fast write (CFW) 12
dynamic storage adjustment (DSA) 11
Hipersorting 9
sorting with data space 11

options
ICEMAC 34
installation 34
run-time 25, 39
run-time performance 54

OS/390 xiii
OUTFIL

benefits 8
general information 8

OUTFIL control statement 64
OUTREC control statement 64

P
paging

system 4
trade-offs 3

Peerage/Vale technique 7
performance

analyzing data 77
analyzing using ICETEXIT 79
analyzing using ICETEXIT data 80
analyzing with SMF data 78
comparisons xi
gathering information 74
main storage 20
moderate analysis 78
run-time options 54
simple analysis 77
site-wide options 34
thorough analysis 80
trade-offs 83
using SmartBatch/MVS 14

performance indicators
channel usage 4
CPU time 4
DASD utilization 5
device connect time 4
elapsed time 5
EXCPs, execute channel program (EXCP)

commands 4
HPT (Hiperspace Processing Time) 4
I/O activity 4
IIP (I/O Interrupt Processing) 4
JES log 69
RCT (Region Control Task) 4
RMF (Resource Measurement Facility) 72
SMF (System Management Facilities) 71
SRB (Service Request Block) 4
system paging activity 4
TCB (Task Control Block) 4
where to find 69

Performance Management for I/O (PMIO)
general information 75
phases 75

PL/I 57, 58, 59
placement of data sets 82
PMIO (Performance Management for I/O)

general information 75
phases 75

processor cache 17
processor utilization 4
program residency 25, 72
publications

DFSORT xii
general xii

R
RCT (Region Control Task) 4
recommendations

cache fast write (CFW) 32
Hipersorting 31
sorting with data space 30
storage 27

records
setting number to be merged 45
setting number to be sorted 45

Region Control Task (RCT) 4
reports

GDDM 75
ICETOOL 75, 76
OUTFIL 8
PMIO 75
RMF 72, 81
SLR 75
SMF 71

requirements
main storage 21

residency 72
Resource Measurement Facility (RMF) 4, 72, 81
RMF (Resource Measurement Facility) 4, 72, 81
run-time

options 25, 39

106 DFSORT Tuning Guide R14

run-time (continued)
performance options 54

S
sample jobs listing installation defaults 34
SAS, using with DFSORT 14
SDB (system determined block size) 14
Service Level Reporter (SLR) 75
Service Request Block (SRB) 4
size limitations, sorting with data space 41
SKIPREC option 64
SLR (Service Level Reporter) 75
SmartBatch

general information 14
improving DFSORT performance 53
trade-offs 83
using with DFSORT 14

SMF (System Management Facilities) 26, 71, 72, 78,
80, 85

SMS (Storage Management Subsystem) 21
SORT control statement 67, 68
SORTCNTL 64, 65
SORTDIAG 7, 70, 77
sorting, specifying number of records 45
sorting with data space

benefits 10
DSPSIZE parameter 41
general information 10
guidelines for virtual storage 49
operation 11
recommendations 30
setting the DSPSIZE parameter 41
size limitations 41

sources of data summary 72
SRB (Service Request Block) 4
STOPAFT option 64
storage

central 18
control cache 18
expanded 18
hierarchy 17
main 20, 21
options 27
system-managed 21
understanding options 27
using efficiently 46
virtual 20

Storage Management Subsystem (SMS) 21
striping

general information 13
improving DFSORT performance 53
trade-offs 83

SUM control statement 64, 65, 68
SVC

DFSORT SVC 26, 72, 78, 85
option 85
User SVC 85

SYSIN 67, 68
system determined block size (SDB) 14
system-managed storage 21

System Management Facilities (SMF) 26, 71, 72, 78,
80, 85

system resources
balancing with DFSORT requirements 81

T
tape, general information 19
tape work data sets 7
Task Control Block (TCB) 4
TCB (Task Control Block) 4
techniques for understanding use

moderate analysis 78
simple analysis 77
thorough analysis 80

TEXIT option 85
Time-of-Day Installation Modules 33
trade-offs

CPU time 83
DASD utilization 3
elapsed time 3, 83
Hipersorting 83
I/O activity 3, 83
processor load 3
system paging activity 3
virtual storage 83
work data sets 83

tuning
during installation 25
examples 2
general information 1
importance 1
performance indicators 4
purpose 2

U
User SVC 85
utilization

DASD 5
processor 4

V
VIO (virtual input output)

analyzing use of data sets 83
DFSORT performance 53, 83

VIO in Expanded Storage 15
virtual storage

analyzing use 82
data set size 46
DFSORT performance 46, 48
environmental considerations 20
ESCON channels 47
guidelines 49
sorting with data space 49
sources of data 72
trade-offs 83
virtual storage 48

VSAM, options that affect performance 34

Index 107

W
work data sets

cache fast write (CFW) 12
DASD 7, 19
dynamic allocation 13
JCL 13
options that affect allocation 34
options that influence allocation 34
sources of data 72
space trade-offs 83
tape 7, 19

World Wide Web 1

108 DFSORT Tuning Guide R14

Readers’ Comments — We’d Like to Hear from You

DFSORT
Tuning Guide

Publication No. SC26-3111-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-3111-02

SC26-3111-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5740-SM1

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-3111-02

	Contents
	Figures
	Notices
	Programming Interface Information
	Trademarks

	
	Performance Comparisons
	About This Book
	Related Publications
	DFSORT Library
	DFSORT Library Softcopy Information
	OS/390 Publications
	Storage Management Library (SML)
	Storage Subsystem Library (SSL)
	Other Documentation

	Referenced Publications

	Summary of Changes
	Third Edition, September 1998
	New Programming Support for Release 14
	Symbols for Fields and Constants
	Improvements in Performance, Capacity and Storage Usage
	Time-of-Day Option Controls
	Repackaging
	OUTFIL Processing Enhancements
	ICETOOL Enhancement
	Installation and Run-Time Option Enhancements
	Other Enhancements
	OS/390 and MVS/ESA Only

	New Programming Support for Release 13 (PTFs after April, 1996)
	Additional Year 2000 Features
	OS/390 Registration

	New Programming Support for Release 13 (PTFs - April, 1996)
	Year 2000 Features
	Performance Improvements for FLR and VLR Blockset Sorts
	Floating Point for SUM
	Security Improvements
	EXCPVR Processing Removed
	New Device Support for Release 13 (PTFs)

	Chapter 1. Introduction
	DFSORT on the World Wide Web
	DFSORT FTP Site
	The Importance of Tuning
	Examples of Successful Tuning
	System Resources
	Performance Indicators
	Processor Utilization
	System Paging
	I/O Activity
	Elapsed Time
	DASD Utilization

	Chapter 2. DFSORT Performance Features
	Blockset Technique
	OUTFIL
	Benefits

	Hipersorting
	Benefits
	Operation

	Sorting with Data Space
	Benefits
	Operation

	Dynamic Storage Adjustment
	Benefits
	Operation

	Cache Fast Write (CFW)
	Benefits
	Operation

	ICEGENER
	Compression
	Striping
	Dynamic Allocation of Work Data Sets
	System Determined Block Size (SDB)
	IDCAMS BLDINDEX
	DFSORT's Performance Booster for The SAS System
	SmartBatch Pipes
	VIO in Expanded Storage

	Chapter 3. Environment Considerations
	Storage Hierarchy
	Processor Cache
	Central Storage
	Expanded Storage
	Storage Control Cache
	DASD
	Tape

	Virtual Storage
	Main Storage

	System-Managed Storage

	Chapter 4. Installation Considerations
	DFSORT Installation
	Running DFSORT Resident
	DFSORT SVC
	ICEGENER

	Storage Options
	Recommendations for Storage Options

	DFSORT Capabilities
	Sorting with Data Space
	Recommendations for Sorting with Data Space

	Hipersorting
	Recommendations for Hipersorting

	Cache Fast Write
	Recommendations for Cache Fast Write

	DFSORT Installation Defaults
	ICEMAC
	Environment Installation Modules
	Time-of-Day Installation Modules
	Listing the Installation Defaults with ICETOOL
	Installation Options and Performance

	Installation Exits
	ICEIEXIT
	ICETEXIT

	Chapter 5. Run-Time Considerations
	Sorting with Data Space
	The DSPSIZE Parameter
	How DFSORT Uses Data Space

	Hipersorting
	Limitations
	Application Adjustments

	Cache Fast Write
	File Size
	Storage
	Data Set Size and Virtual Storage
	Virtual Storage Limitations
	Virtual Storage Guidelines
	Virtual Storage and Sorting with Data Space

	Input and Output Data Sets
	Block Sizes
	Space Utilization
	I/O Performance
	Recommendations

	Type of Device
	VIO for DFSORT Data Sets
	Input and Output Data Set Enhancements

	Run-time Options and Performance

	Chapter 6. Application Considerations
	VS COBOL II Interfaces to DFSORT
	Invoking DFSORT from COBOL
	Processing with FASTSRT
	Processing with NOFASTSRT
	Performance

	Sample Sorting Application
	Method 1: COBOL Program with INPUT/OUTPUT PROCEDUREs
	COBOL Calling Program
	Operation (NOFASTSRT in Effect)
	Performance

	Method 2: COBOL Program with DFSORT Control Statements
	Operation (FASTSRT in Effect)
	Productivity
	Control Statements
	COBOL Calling Program
	Performance

	Method 3: DFSORT with Control Statements
	Control Statements
	Operation
	Productivity
	Performance

	Chapter 7. DFSORT Performance Data
	DFSORT Performance Indicators
	Overview of DFSORT Performance Information
	Sources of DFSORT Performance Information
	Service Level Reporter
	Enterprise Performance Data Manager
	Performance Management for I/O
	DFSORT/ICETOOL

	Analysis Techniques for DFSORT Performance Data
	Simple Analysis
	Moderate Analysis
	Using SMF Data
	Using ICEIEXIT Data

	Thorough Analysis
	Using ICETEXIT Data

	Using RMF Data

	DFSORT Requirements and System Resources
	Placement of Data Sets
	Use of Virtual Storage
	Use of Expanded Storage
	Use of VIO Data Sets

	Performance Trade-Offs

	Appendix A. Sample ICETEXIT
	Appendix B. Estimating Elapsed Time
	Summary of Changes
	Release 13
	New Programming Support for Release 13
	DFSORT's Performance Booster for The SAS** System
	Dynamic Hipersorting
	Performance
	OUTFIL Processing
	National Language Support
	ICETOOL Enhancements
	INCLUDE/OMIT Substring Search
	SMF Type-16 Record Enhancements
	Other Enhancements

	New Programming Support for Release 12 (PTFs)
	New Device Support for Release 12 (PTFs)

	Index
	Readers’ Comments — We'd Like to Hear from You

